A latent topic model with Markov transition for process data.

Haochen Xu, Guanhua Fang, Zhiliang Ying
{"title":"A latent topic model with Markov transition for process data.","authors":"Haochen Xu,&nbsp;Guanhua Fang,&nbsp;Zhiliang Ying","doi":"10.1111/bmsp.12197","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a latent topic model with a Markov transition for process data, which consists of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem-solving items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinee's latent state. Using topic transition probabilities along with response times enables us to capture examinees' learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem-solving item in the 2012 version of the Programme for International Student Assessment (PISA).</p>","PeriodicalId":272649,"journal":{"name":"The British journal of mathematical and statistical psychology","volume":"73 3","pages":"474-505"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/bmsp.12197","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of mathematical and statistical psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a latent topic model with a Markov transition for process data, which consists of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem-solving items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinee's latent state. Using topic transition probabilities along with response times enables us to capture examinees' learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem-solving item in the 2012 version of the Programme for International Student Assessment (PISA).

过程数据的马尔可夫转换潜主题模型。
我们提出了一个具有马尔可夫转换的过程数据的潜在主题模型,该模型由记录在日志文件中的时间戳事件组成。这类数据正越来越广泛地用于以计算机为基础的具有复杂问题解决项目的教育评估。该模型可以看作是层次贝叶斯主题模型的扩展,具有隐马尔可夫结构,以适应考生潜在状态的潜在演变。使用主题转移概率和响应时间使我们能够捕捉考生的学习轨迹,使聚类/分类更有效。为了解决这一具有挑战性的计算问题,提出了一种前向后变分期望最大化(FB-VEM)算法。在一定的渐近条件下,建立了有用的理论性质。该方法被应用于2012年版国际学生评估项目(PISA)中一个复杂的问题解决项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信