{"title":"A review of traditional and machine learning methods applied to animal breeding.","authors":"Shadi Nayeri, Mehdi Sargolzaei, Dan Tulpan","doi":"10.1017/S1466252319000148","DOIUrl":null,"url":null,"abstract":"<p><p>The current livestock management landscape is transitioning to a high-throughput digital era where large amounts of information captured by systems of electro-optical, acoustical, mechanical, and biosensors is stored and analyzed on a daily and hourly basis, and actionable decisions are made based on quantitative and qualitative analytic results. While traditional animal breeding prediction methods have been used with great success until recently, the deluge of information starts to create a computational and storage bottleneck that could lead to negative long-term impacts on herd management strategies if not handled properly. A plethora of machine learning approaches, successfully used in various industrial and scientific applications, made their way in the mainstream approaches for livestock breeding techniques, and current results show that such methods have the potential to match or surpass the traditional approaches, while most of the time they are more scalable from a computational and storage perspective. This article provides a succinct view on what traditional and novel prediction methods are currently used in the livestock breeding field, how successful they are, and how the future of the field looks in the new digital agriculture era.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":"20 1","pages":"31-46"},"PeriodicalIF":4.3000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1466252319000148","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Health Research Reviews","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S1466252319000148","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 25
Abstract
The current livestock management landscape is transitioning to a high-throughput digital era where large amounts of information captured by systems of electro-optical, acoustical, mechanical, and biosensors is stored and analyzed on a daily and hourly basis, and actionable decisions are made based on quantitative and qualitative analytic results. While traditional animal breeding prediction methods have been used with great success until recently, the deluge of information starts to create a computational and storage bottleneck that could lead to negative long-term impacts on herd management strategies if not handled properly. A plethora of machine learning approaches, successfully used in various industrial and scientific applications, made their way in the mainstream approaches for livestock breeding techniques, and current results show that such methods have the potential to match or surpass the traditional approaches, while most of the time they are more scalable from a computational and storage perspective. This article provides a succinct view on what traditional and novel prediction methods are currently used in the livestock breeding field, how successful they are, and how the future of the field looks in the new digital agriculture era.
期刊介绍:
Animal Health Research Reviews provides an international forum for the publication of reviews and commentaries on all aspects of animal health. Papers include in-depth analyses and broader overviews of all facets of health and science in both domestic and wild animals. Major subject areas include physiology and pharmacology, parasitology, bacteriology, food and environmental safety, epidemiology and virology. The journal is of interest to researchers involved in animal health, parasitologists, food safety experts and academics interested in all aspects of animal production and welfare.