A TESTING BASED APPROACH TO THE DISCOVERY OF DIFFERENTIALLY CORRELATED VARIABLE SETS.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2018-06-01 Epub Date: 2018-07-28 DOI:10.1214/17-AOAS1083
By Kelly Bodwin, Kai Zhang, Andrew Nobel
{"title":"A TESTING BASED APPROACH TO THE DISCOVERY OF DIFFERENTIALLY CORRELATED VARIABLE SETS.","authors":"By Kelly Bodwin,&nbsp;Kai Zhang,&nbsp;Andrew Nobel","doi":"10.1214/17-AOAS1083","DOIUrl":null,"url":null,"abstract":"<p><p>Given data obtained under two sampling conditions, it is often of interest to identify variables that behave differently in one condition than in the other. We introduce a method for differential analysis of second-order behavior called Differential Correlation Mining (DCM). The DCM method identifies differentially correlated sets of variables, with the property that the average pairwise correlation between variables in a set is higher under one sample condition than the other. DCM is based on an iterative search procedure that adaptively updates the size and elements of a candidate variable set. Updates are performed via hypothesis testing of individual variables, based on the asymptotic distribution of their average differential correlation. We investigate the performance of DCM by applying it to simulated data as well as to recent experimental datasets in genomics and brain imaging.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"12 2","pages":"1180-1203"},"PeriodicalIF":1.3000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-AOAS1083","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/17-AOAS1083","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

Abstract

Given data obtained under two sampling conditions, it is often of interest to identify variables that behave differently in one condition than in the other. We introduce a method for differential analysis of second-order behavior called Differential Correlation Mining (DCM). The DCM method identifies differentially correlated sets of variables, with the property that the average pairwise correlation between variables in a set is higher under one sample condition than the other. DCM is based on an iterative search procedure that adaptively updates the size and elements of a candidate variable set. Updates are performed via hypothesis testing of individual variables, based on the asymptotic distribution of their average differential correlation. We investigate the performance of DCM by applying it to simulated data as well as to recent experimental datasets in genomics and brain imaging.

Abstract Image

Abstract Image

Abstract Image

发现差异相关变量集的一种基于测试的方法。
给定在两种采样条件下获得的数据,识别在一种条件下表现不同于另一种条件的变量通常是令人感兴趣的。我们介绍了一种用于二阶行为微分分析的方法,称为微分相关挖掘(DCM)。DCM方法识别差异相关的变量集,其特性是在一个样本条件下,一集中变量之间的平均成对相关性高于另一个样本情况。DCM基于迭代搜索过程,该过程自适应地更新候选变量集的大小和元素。更新是通过对单个变量的假设检验进行的,基于其平均微分相关性的渐近分布。我们通过将DCM应用于基因组学和脑成像的模拟数据以及最近的实验数据集来研究DCM的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信