Estimation of the Distribution of Random Parameters in Discrete Time Abstract Parabolic Systems with Unbounded Input and Output: Approximation and Convergence.

Communications in applied analysis Pub Date : 2019-01-01 Epub Date: 2019-01-18 DOI:10.12732/caa.v23i2.4
Melike Sirlanci, Susan E Luczak, I G Rosen
{"title":"Estimation of the Distribution of Random Parameters in Discrete Time Abstract Parabolic Systems with Unbounded Input and Output: Approximation and Convergence.","authors":"Melike Sirlanci,&nbsp;Susan E Luczak,&nbsp;I G Rosen","doi":"10.12732/caa.v23i2.4","DOIUrl":null,"url":null,"abstract":"<p><p>A finite dimensional abstract approximation and convergence theory is developed for estimation of the distribution of random parameters in infinite dimensional discrete time linear systems with dynamics described by regularly dissipative operators and involving, in general, unbounded input and output operators. By taking expectations, the system is re-cast as an equivalent abstract parabolic system in a Gelfand triple of Bochner spaces wherein the random parameters become new space-like variables. Estimating their distribution is now analogous to estimating a spatially varying coefficient in a standard deterministic parabolic system. The estimation problems are approximated by a sequence of finite dimensional problems. Convergence is established using a state space-varying version of the Trotter-Kato semigroup approximation theorem. Numerical results for a number of examples involving the estimation of exponential families of densities for random parameters in a diffusion equation with boundary input and output are presented and discussed.</p>","PeriodicalId":92887,"journal":{"name":"Communications in applied analysis","volume":"23 2","pages":"287-329"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904110/pdf/nihms-1008733.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in applied analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/caa.v23i2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A finite dimensional abstract approximation and convergence theory is developed for estimation of the distribution of random parameters in infinite dimensional discrete time linear systems with dynamics described by regularly dissipative operators and involving, in general, unbounded input and output operators. By taking expectations, the system is re-cast as an equivalent abstract parabolic system in a Gelfand triple of Bochner spaces wherein the random parameters become new space-like variables. Estimating their distribution is now analogous to estimating a spatially varying coefficient in a standard deterministic parabolic system. The estimation problems are approximated by a sequence of finite dimensional problems. Convergence is established using a state space-varying version of the Trotter-Kato semigroup approximation theorem. Numerical results for a number of examples involving the estimation of exponential families of densities for random parameters in a diffusion equation with boundary input and output are presented and discussed.

Abstract Image

Abstract Image

具有无界输入和输出的离散时间抽象抛物型系统随机参数分布的估计:近似和收敛性。
发展了一种有限维抽象近似和收敛理论,用于估计无穷维离散时间线性系统中随机参数的分布,该系统的动力学由正则耗散算子描述,通常涉及无界输入和输出算子。通过考虑期望,该系统被重新铸造为Bochner空间的Gelfand三元组中的等价抽象抛物系统,其中随机参数成为新的类空间变量。估计它们的分布现在类似于估计标准确定性抛物系统中的空间变化系数。估计问题由一系列有限维问题来近似。收敛性是使用Trotter-Kato半群近似定理的状态空间变化版本来建立的。给出并讨论了具有边界输入和输出的扩散方程中随机参数的指数族密度估计的几个例子的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信