Novel Deleterious nsSNPs within MEFV Gene that Could Be Used as Diagnostic Markers to Predict Hereditary Familial Mediterranean Fever: Using Bioinformatics Analysis.

Q1 Biochemistry, Genetics and Molecular Biology
Advances in Bioinformatics Pub Date : 2019-06-04 eCollection Date: 2019-01-01 DOI:10.1155/2019/1651587
Mujahed I Mustafa, Tebyan A Abdelhameed, Fatima A Abdelrhman, Soada A Osman, Mohamed A Hassan
{"title":"Novel Deleterious nsSNPs within <i>MEFV</i> Gene that Could Be Used as Diagnostic Markers to Predict Hereditary Familial Mediterranean Fever: Using Bioinformatics Analysis.","authors":"Mujahed I Mustafa,&nbsp;Tebyan A Abdelhameed,&nbsp;Fatima A Abdelrhman,&nbsp;Soada A Osman,&nbsp;Mohamed A Hassan","doi":"10.1155/2019/1651587","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Familial Mediterranean Fever (FMF) is the most common autoinflammatory disease (AID) affecting mainly the ethnic groups originating from Mediterranean basin. We aimed to identify the pathogenic SNPs in MEFV by computational analysis software.</p><p><strong>Methods: </strong>We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structure and function.</p><p><strong>Result: </strong>23 novel mutations out of 857 nsSNPs are found to have deleterious effect on the MEFV structure and function.</p><p><strong>Conclusion: </strong>This is the first in silico analysis of MEFV gene to prioritize SNPs for further genetic mapping studies. After using multiple bioinformatics tools to compare and rely on the results predicted, we found 23 novel mutations that may cause FMF disease and it could be used as diagnostic markers for Mediterranean basin populations.</p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2019 ","pages":"1651587"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/1651587","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/1651587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Familial Mediterranean Fever (FMF) is the most common autoinflammatory disease (AID) affecting mainly the ethnic groups originating from Mediterranean basin. We aimed to identify the pathogenic SNPs in MEFV by computational analysis software.

Methods: We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structure and function.

Result: 23 novel mutations out of 857 nsSNPs are found to have deleterious effect on the MEFV structure and function.

Conclusion: This is the first in silico analysis of MEFV gene to prioritize SNPs for further genetic mapping studies. After using multiple bioinformatics tools to compare and rely on the results predicted, we found 23 novel mutations that may cause FMF disease and it could be used as diagnostic markers for Mediterranean basin populations.

Abstract Image

Abstract Image

Abstract Image

MEFV基因内新的有害非单核苷酸多态性可作为预测遗传性家族性地中海热的诊断标记:应用生物信息学分析
背景:家族性地中海热(FMF)是最常见的自身炎症性疾病(AID),主要影响地中海盆地地区的少数民族。我们的目的是通过计算分析软件鉴定MEFV的致病snp。方法:利用不同的生物信息学工具对每个SNP的结构效应进行计算机预测,预测替代对蛋白质结构和功能的影响。结果:857个非单核苷酸多态性中有23个突变对MEFV的结构和功能有不良影响。结论:这是MEFV基因的首次计算机分析,为进一步的遗传作图研究优先考虑snp。在使用多种生物信息学工具对预测结果进行比较和依赖后,我们发现了23个可能导致FMF疾病的新突变,并可作为地中海盆地人群的诊断标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Bioinformatics
Advances in Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信