Optimal vaccine allocation during the mumps outbreak in two SIR centres.

IF 0.8 4区 数学 Q4 BIOLOGY
Alexey A Chernov, Mark Y Kelbert, Aleksandr A Shemendyuk
{"title":"Optimal vaccine allocation during the mumps outbreak in two SIR centres.","authors":"Alexey A Chernov,&nbsp;Mark Y Kelbert,&nbsp;Aleksandr A Shemendyuk","doi":"10.1093/imammb/dqz012","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this work is to investigate the optimal vaccine sharing between two susceptible, infected, removed (SIR) centres in the presence of migration fluxes of susceptibles and infected individuals during the mumps outbreak. Optimality of the vaccine allocation means the minimization of the total number of lost working days during the whole period of epidemic outbreak $[0,t_f]$, which can be described by the functional $Q=\\int _0^{t_f}I(t)\\,{\\textrm{d}}t$, where $I(t)$ stands for the number of infectives at time $t$. We explain the behaviour of the optimal allocation, which depends on the model parameters and the amount of vaccine available $V$.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":"37 3","pages":"303-312"},"PeriodicalIF":0.8000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqz012","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqz012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

The aim of this work is to investigate the optimal vaccine sharing between two susceptible, infected, removed (SIR) centres in the presence of migration fluxes of susceptibles and infected individuals during the mumps outbreak. Optimality of the vaccine allocation means the minimization of the total number of lost working days during the whole period of epidemic outbreak $[0,t_f]$, which can be described by the functional $Q=\int _0^{t_f}I(t)\,{\textrm{d}}t$, where $I(t)$ stands for the number of infectives at time $t$. We explain the behaviour of the optimal allocation, which depends on the model parameters and the amount of vaccine available $V$.

两个SIR中心流行性腮腺炎暴发期间疫苗的最佳分配。
这项工作的目的是调查在腮腺炎暴发期间存在易感者和感染者迁移通量的两个易感、感染、移除(SIR)中心之间的最佳疫苗共享。疫苗分配的最优性是指在整个疫情爆发期间损失的工作日总数$[0,t_f]$最小,可以用函数$Q=\int _0^{t_f}I(t)\,{\textrm{d}}t$来描述,其中$I(t)$表示时刻$t$的感染人数。我们解释了最优分配的行为,这取决于模型参数和可用疫苗的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Formerly the IMA Journal of Mathematics Applied in Medicine and Biology. Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged. The journal welcomes contributions relevant to any area of the life sciences including: -biomechanics- biophysics- cell biology- developmental biology- ecology and the environment- epidemiology- immunology- infectious diseases- neuroscience- pharmacology- physiology- population biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信