Matrix Riemann-Hilbert problems with jumps across Carleson contours.

Pub Date : 2018-01-01 Epub Date: 2017-01-28 DOI:10.1007/s00605-017-1019-0
Jonatan Lenells
{"title":"Matrix Riemann-Hilbert problems with jumps across Carleson contours.","authors":"Jonatan Lenells","doi":"10.1007/s00605-017-1019-0","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a theory of <math><mrow><mi>n</mi> <mo>×</mo> <mi>n</mi></mrow> </math> -matrix Riemann-Hilbert problems for a class of jump contours and jump matrices of low regularity. Our basic assumption is that the contour <math><mi>Γ</mi></math> is a finite union of simple closed Carleson curves in the Riemann sphere. In particular, unbounded contours with cusps, corners, and nontransversal intersections are allowed. We introduce a notion of <math><msup><mi>L</mi> <mi>p</mi></msup> </math> -Riemann-Hilbert problem and establish basic uniqueness results and Fredholm properties. We also investigate the implications of Fredholmness for the unique solvability and prove a theorem on contour deformation.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-017-1019-0","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-017-1019-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We develop a theory of n × n -matrix Riemann-Hilbert problems for a class of jump contours and jump matrices of low regularity. Our basic assumption is that the contour Γ is a finite union of simple closed Carleson curves in the Riemann sphere. In particular, unbounded contours with cusps, corners, and nontransversal intersections are allowed. We introduce a notion of L p -Riemann-Hilbert problem and establish basic uniqueness results and Fredholm properties. We also investigate the implications of Fredholmness for the unique solvability and prove a theorem on contour deformation.

分享
查看原文
跨越Carleson等高线的矩阵黎曼-希尔伯特问题。
针对一类低正则性跳跃轮廓和跳跃矩阵,建立了n × n矩阵黎曼-希尔伯特问题理论。我们的基本假设是轮廓Γ是黎曼球中简单封闭Carleson曲线的有限并。特别地,允许有顶点、角和非横交点的无界轮廓。引入了L - p -Riemann-Hilbert问题的概念,建立了基本唯一性结果和Fredholm性质。我们还研究了Fredholmness对唯一可解性的意义,并证明了一个关于轮廓变形的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信