Eric Houngla Adjakossa, Norbert Mahouton Hounkonnou, Grégory Nuel
{"title":"Computationally Stable Estimation Procedure for the Multivariate Linear Mixed-Effect Model and Application to Malaria Public Health Problem.","authors":"Eric Houngla Adjakossa, Norbert Mahouton Hounkonnou, Grégory Nuel","doi":"10.1515/ijb-2017-0076","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we provide the ML (Maximum Likelihood) and the REML (REstricted ML) criteria for consistently estimating multivariate linear mixed-effects models with arbitrary correlation structure between the random effects across dimensions, but independent (and possibly heteroscedastic) residuals. By factorizing the random effects covariance matrix, we provide an explicit expression of the profiled deviance through a reparameterization of the model. This strategy can be viewed as the generalization of the estimation procedure used by Douglas Bates and his co-authors in the context of the fitting of one-dimensional linear mixed-effects models. Beside its robustness regarding the starting points, the approach enables a numerically consistent estimate of the random effects covariance matrix while classical alternatives such as the EM algorithm are usually non-consistent. In a simulation study, we compare the estimates obtained from the present method with the EM algorithm-based estimates. We finally apply the method to a study of an immune response to Malaria in Benin.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2017-0076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2017-0076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we provide the ML (Maximum Likelihood) and the REML (REstricted ML) criteria for consistently estimating multivariate linear mixed-effects models with arbitrary correlation structure between the random effects across dimensions, but independent (and possibly heteroscedastic) residuals. By factorizing the random effects covariance matrix, we provide an explicit expression of the profiled deviance through a reparameterization of the model. This strategy can be viewed as the generalization of the estimation procedure used by Douglas Bates and his co-authors in the context of the fitting of one-dimensional linear mixed-effects models. Beside its robustness regarding the starting points, the approach enables a numerically consistent estimate of the random effects covariance matrix while classical alternatives such as the EM algorithm are usually non-consistent. In a simulation study, we compare the estimates obtained from the present method with the EM algorithm-based estimates. We finally apply the method to a study of an immune response to Malaria in Benin.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.