S Akbar, M Peikari, S Salama, S Nofech-Mozes, A L Martel
{"title":"The transition module: a method for preventing overfitting in convolutional neural networks.","authors":"S Akbar, M Peikari, S Salama, S Nofech-Mozes, A L Martel","doi":"10.1080/21681163.2018.1427148","DOIUrl":null,"url":null,"abstract":"<p><p>Digital pathology has advanced substantially over the last decade with the adoption of slide scanners in pathology labs. The use of digital slides to analyse diseases at the microscopic level is both cost-effective and efficient. Identifying complex tumour patterns in digital slides is a challenging problem but holds significant importance for tumour burden assessment, grading and many other pathological assessments in cancer research. The use of convolutional neural networks (CNNs) to analyse such complex images has been well adopted in digital pathology. However, in recent years, the architecture of CNNs has altered with the introduction of inception modules which have shown great promise for classification tasks. In this paper, we propose a modified 'transition' module which encourages generalisation in a deep learning framework with few training samples. In the transition module, filters of varying sizes are used to encourage class-specific filters at multiple spatial resolutions followed by global average pooling. We demonstrate the performance of the transition module in AlexNet and ZFNet, for classifying breast tumours in two independent data-sets of scanned histology sections; the inclusion of the transition module in these CNNs improved performance.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21681163.2018.1427148","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2018.1427148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 10
Abstract
Digital pathology has advanced substantially over the last decade with the adoption of slide scanners in pathology labs. The use of digital slides to analyse diseases at the microscopic level is both cost-effective and efficient. Identifying complex tumour patterns in digital slides is a challenging problem but holds significant importance for tumour burden assessment, grading and many other pathological assessments in cancer research. The use of convolutional neural networks (CNNs) to analyse such complex images has been well adopted in digital pathology. However, in recent years, the architecture of CNNs has altered with the introduction of inception modules which have shown great promise for classification tasks. In this paper, we propose a modified 'transition' module which encourages generalisation in a deep learning framework with few training samples. In the transition module, filters of varying sizes are used to encourage class-specific filters at multiple spatial resolutions followed by global average pooling. We demonstrate the performance of the transition module in AlexNet and ZFNet, for classifying breast tumours in two independent data-sets of scanned histology sections; the inclusion of the transition module in these CNNs improved performance.
期刊介绍:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.