{"title":"A stochastic model for cancer metastasis: branching stochastic process with settlement.","authors":"Christoph Frei, Thomas Hillen, Adam Rhodes","doi":"10.1093/imammb/dqz009","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a new stochastic model for metastatic growth, which takes the form of a branching stochastic process with settlement. The moving particles are interpreted as clusters of cancer cells, while stationary particles correspond to micro-tumours and metastases. The analysis of expected particle location, their locational variance, the furthest particle distribution and the extinction probability leads to a common type of differential equation, namely, a non-local integro-differential equation with distributed delay. We prove global existence and uniqueness results for this type of equation. The solutions' asymptotic behaviour for long time is characterized by an explicit index, a metastatic reproduction number $R_0$: metastases spread for $R_{0}>1$ and become extinct for $R_{0}<1$. Using metastatic data from mouse experiments, we show the suitability of our framework to model metastatic cancer.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqz009","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqz009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
We introduce a new stochastic model for metastatic growth, which takes the form of a branching stochastic process with settlement. The moving particles are interpreted as clusters of cancer cells, while stationary particles correspond to micro-tumours and metastases. The analysis of expected particle location, their locational variance, the furthest particle distribution and the extinction probability leads to a common type of differential equation, namely, a non-local integro-differential equation with distributed delay. We prove global existence and uniqueness results for this type of equation. The solutions' asymptotic behaviour for long time is characterized by an explicit index, a metastatic reproduction number $R_0$: metastases spread for $R_{0}>1$ and become extinct for $R_{0}<1$. Using metastatic data from mouse experiments, we show the suitability of our framework to model metastatic cancer.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology