A penalized regression approach for DNA copy number study using the sequencing data.

IF 0.9 4区 数学 Q3 Mathematics
Jaeeun Lee, Jie Chen
{"title":"A penalized regression approach for DNA copy number study using the sequencing data.","authors":"Jaeeun Lee,&nbsp;Jie Chen","doi":"10.1515/sagmb-2018-0001","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling the high-throughput next generation sequencing (NGS) data, resulting from experiments with the goal of profiling tumor and control samples for the study of DNA copy number variants (CNVs), remains to be a challenge in various ways. In this application work, we provide an efficient method for detecting multiple CNVs using NGS reads ratio data. This method is based on a multiple statistical change-points model with the penalized regression approach, 1d fused LASSO, that is designed for ordered data in a one-dimensional structure. In addition, since the path algorithm traces the solution as a function of a tuning parameter, the number and locations of potential CNV region boundaries can be estimated simultaneously in an efficient way. For tuning parameter selection, we then propose a new modified Bayesian information criterion, called JMIC, and compare the proposed JMIC with three different Bayes information criteria used in the literature. Simulation results have shown the better performance of JMIC for tuning parameter selection, in comparison with the other three criterion. We applied our approach to the sequencing data of reads ratio between the breast tumor cell lines HCC1954 and its matched normal cell line BL 1954 and the results are in-line with those discovered in the literature.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"18 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0001","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Modeling the high-throughput next generation sequencing (NGS) data, resulting from experiments with the goal of profiling tumor and control samples for the study of DNA copy number variants (CNVs), remains to be a challenge in various ways. In this application work, we provide an efficient method for detecting multiple CNVs using NGS reads ratio data. This method is based on a multiple statistical change-points model with the penalized regression approach, 1d fused LASSO, that is designed for ordered data in a one-dimensional structure. In addition, since the path algorithm traces the solution as a function of a tuning parameter, the number and locations of potential CNV region boundaries can be estimated simultaneously in an efficient way. For tuning parameter selection, we then propose a new modified Bayesian information criterion, called JMIC, and compare the proposed JMIC with three different Bayes information criteria used in the literature. Simulation results have shown the better performance of JMIC for tuning parameter selection, in comparison with the other three criterion. We applied our approach to the sequencing data of reads ratio between the breast tumor cell lines HCC1954 and its matched normal cell line BL 1954 and the results are in-line with those discovered in the literature.

使用测序数据进行DNA拷贝数研究的惩罚回归方法。
为研究DNA拷贝数变异(CNVs)而对肿瘤和对照样本进行分析的实验产生的高通量下一代测序(NGS)数据进行建模,在各个方面仍然是一个挑战。在这项应用工作中,我们提供了一种利用NGS读比数据检测多个CNVs的有效方法。该方法基于多个统计变化点模型和惩罚回归方法,一维融合LASSO,该方法是为一维结构中的有序数据设计的。此外,由于路径算法将解作为一个调谐参数的函数进行跟踪,因此可以有效地同时估计潜在CNV区域边界的数量和位置。为了优化参数选择,我们提出了一种新的改进的贝叶斯信息准则,称为JMIC,并将所提出的JMIC与文献中使用的三种不同的贝叶斯信息准则进行比较。仿真结果表明,与其他三种准则相比,JMIC准则在调优参数选择方面具有更好的性能。我们将我们的方法应用于乳腺肿瘤细胞系HCC1954与其匹配的正常细胞系BL 1954的reads比值测序数据,结果与文献发现一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信