INFORMATION THEORETIC FEATURE PROJECTION FOR SINGLE-TRIAL BRAIN-COMPUTER INTERFACES.

Ozan Özdenizci, Fernando Quivira, Deniz Erdoğmuş
{"title":"INFORMATION THEORETIC FEATURE PROJECTION FOR SINGLE-TRIAL BRAIN-COMPUTER INTERFACES.","authors":"Ozan Özdenizci,&nbsp;Fernando Quivira,&nbsp;Deniz Erdoğmuş","doi":"10.1109/MLSP.2017.8168178","DOIUrl":null,"url":null,"abstract":"<p><p>Current approaches on optimal spatio-spectral feature extraction for single-trial BCIs exploit mutual information based feature ranking and selection algorithms. In order to overcome potential confounders underlying feature selection by information theoretic criteria, we propose a non-parametric feature projection framework for dimensionality reduction that utilizes mutual information based stochastic gradient descent. We demonstrate the feasibility of the protocol based on analyses of EEG data collected during execution of open and close palm hand gestures. We further discuss the approach in terms of potential insights in the context of neurophysiologically driven prosthetic hand control.</p>","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MLSP.2017.8168178","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Current approaches on optimal spatio-spectral feature extraction for single-trial BCIs exploit mutual information based feature ranking and selection algorithms. In order to overcome potential confounders underlying feature selection by information theoretic criteria, we propose a non-parametric feature projection framework for dimensionality reduction that utilizes mutual information based stochastic gradient descent. We demonstrate the feasibility of the protocol based on analyses of EEG data collected during execution of open and close palm hand gestures. We further discuss the approach in terms of potential insights in the context of neurophysiologically driven prosthetic hand control.

Abstract Image

Abstract Image

单次试验脑机接口的信息理论特征投影。
目前针对单次试验脑机接口的最优空间光谱特征提取方法利用了基于互信息的特征排序和选择算法。为了克服信息理论标准下特征选择的潜在混杂因素,我们提出了一种基于互信息的随机梯度下降的非参数特征投影降维框架。我们通过分析手掌张开和闭合时收集的脑电图数据,证明了该协议的可行性。我们进一步讨论了在神经生理学驱动的假手控制背景下的潜在见解的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信