James H Avruch, Bote G Bruinsma, Pepijn D Weeder, Gautham V Sridharan, Robert J Porte, Heidi Yeh, James F Markmann, Korkut Uygun
{"title":"A novel model for ex situ reperfusion of the human liver following subnormothermic machine perfusion.","authors":"James H Avruch, Bote G Bruinsma, Pepijn D Weeder, Gautham V Sridharan, Robert J Porte, Heidi Yeh, James F Markmann, Korkut Uygun","doi":"10.1142/S2339547817500108","DOIUrl":null,"url":null,"abstract":"<p><p>Machine perfusion-based organ preservation techniques are prudently transitioning into clinical practice. Although experimental data is compelling, the outcomes in the highly variable clinical donation-transplantation setting are unpredictable. Here, we offer an intermediate tool for pre-clinical assessment of human donor livers. We present a model for ex situ reperfusion of discarded human livers and report on its application in three human livers that have undergone subnormothermic (21°C) machine perfusion as an experimental preservation method. During reperfusion, the livers macroscopically reperfused in the first 15 minutes, and remained visually well-perfused for 3 hours of ex situ reperfusion. Bile production and oxygen consumption were observed throughout ex situ reperfusion. ATP levels increased 4.25-fold during SNMP. Between the end of SNMP and the end of reperfusion ATP levels dropped 45%. ALT levels in blood increased rapidly in the first 30 minutes and ALT release continued to taper off towards the end of perfusion. Release of CRP, TNF-α, IL-1β, and IL-12, IFN-γ was sustained during reperfusion. These findings support the use of this model for the evaluation of novel human liver preservation techniques.</p>","PeriodicalId":22332,"journal":{"name":"TECHNOLOGY","volume":"5 4","pages":"196-200"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2339547817500108","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2339547817500108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Machine perfusion-based organ preservation techniques are prudently transitioning into clinical practice. Although experimental data is compelling, the outcomes in the highly variable clinical donation-transplantation setting are unpredictable. Here, we offer an intermediate tool for pre-clinical assessment of human donor livers. We present a model for ex situ reperfusion of discarded human livers and report on its application in three human livers that have undergone subnormothermic (21°C) machine perfusion as an experimental preservation method. During reperfusion, the livers macroscopically reperfused in the first 15 minutes, and remained visually well-perfused for 3 hours of ex situ reperfusion. Bile production and oxygen consumption were observed throughout ex situ reperfusion. ATP levels increased 4.25-fold during SNMP. Between the end of SNMP and the end of reperfusion ATP levels dropped 45%. ALT levels in blood increased rapidly in the first 30 minutes and ALT release continued to taper off towards the end of perfusion. Release of CRP, TNF-α, IL-1β, and IL-12, IFN-γ was sustained during reperfusion. These findings support the use of this model for the evaluation of novel human liver preservation techniques.