Trishanta Padayachee, Tatsiana Khamiakova, Ziv Shkedy, Perttu Salo, Markus Perola, Tomasz Burzykowski
{"title":"A multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate.","authors":"Trishanta Padayachee, Tatsiana Khamiakova, Ziv Shkedy, Perttu Salo, Markus Perola, Tomasz Burzykowski","doi":"10.1515/sagmb-2018-0008","DOIUrl":null,"url":null,"abstract":"<p><p>A way to enhance our understanding of the development and progression of complex diseases is to investigate the influence of cellular environments on gene co-expression (i.e. gene-pair correlations). Often, changes in gene co-expression are investigated across two or more biological conditions defined by categorizing a continuous covariate. However, the selection of arbitrary cut-off points may have an influence on the results of an analysis. To address this issue, we use a general linear model (GLM) for correlated data to study the relationship between gene-module co-expression and a covariate like metabolite concentration. The GLM specifies the gene-pair correlations as a function of the continuous covariate. The use of the GLM allows for investigating different (linear and non-linear) patterns of co-expression. Furthermore, the modeling approach offers a formal framework for testing hypotheses about possible patterns of co-expression. In our paper, a simulation study is used to assess the performance of the GLM. The performance is compared with that of a previously proposed GLM that utilizes categorized covariates. The versatility of the model is illustrated by using a real-life example. We discuss the theoretical issues related to the construction of the test statistics and the computational challenges related to fitting of the proposed model.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"18 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
A way to enhance our understanding of the development and progression of complex diseases is to investigate the influence of cellular environments on gene co-expression (i.e. gene-pair correlations). Often, changes in gene co-expression are investigated across two or more biological conditions defined by categorizing a continuous covariate. However, the selection of arbitrary cut-off points may have an influence on the results of an analysis. To address this issue, we use a general linear model (GLM) for correlated data to study the relationship between gene-module co-expression and a covariate like metabolite concentration. The GLM specifies the gene-pair correlations as a function of the continuous covariate. The use of the GLM allows for investigating different (linear and non-linear) patterns of co-expression. Furthermore, the modeling approach offers a formal framework for testing hypotheses about possible patterns of co-expression. In our paper, a simulation study is used to assess the performance of the GLM. The performance is compared with that of a previously proposed GLM that utilizes categorized covariates. The versatility of the model is illustrated by using a real-life example. We discuss the theoretical issues related to the construction of the test statistics and the computational challenges related to fitting of the proposed model.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.