{"title":"Imaging the 3-D Deformation of the Finger Pad When Interacting with Compliant Materials.","authors":"Steven C Hauser, Gregory J Gerling","doi":"10.1109/HAPTICS.2018.8357145","DOIUrl":null,"url":null,"abstract":"<p><p>We need to understand the physics of how the skin of the finger pad deforms, and their tie to perception, to accurately reproduce a sense of compliance, or 'softness,' in tactile displays. Contact interactions with compliant materials are distinct from those with rigid surfaces where the skin flattens completely. To capture unique patterns in skin deformation over a range of compliances, we developed a stereo imaging technique to visualize the skin through optically clear stimuli. Accompanying algorithms serve to locate and track points marked with ink on the skin, correct for light refraction through stimuli, and estimate aspects of contact between skin and stimulus surfaces. The method achieves a 3-D spatial resolution of 60-120 microns and temporal resolution of 30 frames per second. With human subjects, we measured the skin's deformation over a range of compliances (61-266 kPa), displacements (0-4 mm), and velocities (1- 15 mm/s). The results indicate that the method can differentiate patterns of skin deformation between compliances, as defined by metrics including surface penetration depth, retention of geometric shape, and force per gross contact area. Observations of biomechanical cues of this sort are key to understanding the perceptual encoding of compliance.</p>","PeriodicalId":90847,"journal":{"name":"IEEE Haptics Symposium : [proceedings]. IEEE Haptics Symposium","volume":"2018 ","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/HAPTICS.2018.8357145","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Haptics Symposium : [proceedings]. IEEE Haptics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAPTICS.2018.8357145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We need to understand the physics of how the skin of the finger pad deforms, and their tie to perception, to accurately reproduce a sense of compliance, or 'softness,' in tactile displays. Contact interactions with compliant materials are distinct from those with rigid surfaces where the skin flattens completely. To capture unique patterns in skin deformation over a range of compliances, we developed a stereo imaging technique to visualize the skin through optically clear stimuli. Accompanying algorithms serve to locate and track points marked with ink on the skin, correct for light refraction through stimuli, and estimate aspects of contact between skin and stimulus surfaces. The method achieves a 3-D spatial resolution of 60-120 microns and temporal resolution of 30 frames per second. With human subjects, we measured the skin's deformation over a range of compliances (61-266 kPa), displacements (0-4 mm), and velocities (1- 15 mm/s). The results indicate that the method can differentiate patterns of skin deformation between compliances, as defined by metrics including surface penetration depth, retention of geometric shape, and force per gross contact area. Observations of biomechanical cues of this sort are key to understanding the perceptual encoding of compliance.