Nathan A Mahynski, Lorenzo Rovigatti, Christos N Likos, Athanassios Z Panagiotopoulos
{"title":"Void-Based Assembly of Colloidal Crystals: Using Structure-Directing Agents to Direct the Assembly of Open Colloidal Crystals.","authors":"Nathan A Mahynski, Lorenzo Rovigatti, Christos N Likos, Athanassios Z Panagiotopoulos","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We have used computer simulations to reveal how colloidal crystals may be assembled by engineering the shape and charge of polymeric additives, which act as structure-directing agents (SDAs). Using these agents, only a single desired polymorph may be obtained from a crystallizing mixture of colloids and polymers, which would otherwise result in a defective crystal in the absence of these agents. Building on previous work, which demonstrated this principle in the limiting case of high-density, close-packed crystals, we have now achieved this control over low-density, open crystals, which have broad utility especially in optical applications. These results reveal the general utility of the SDA paradigm in assembling tailored colloidal crystals, which represents a new design method that does not rely on any modification of the colloids themselves.</p>","PeriodicalId":92636,"journal":{"name":"G.I.T. laboratory journal Europe","volume":"5 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506831/pdf/nihms905955.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G.I.T. laboratory journal Europe","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have used computer simulations to reveal how colloidal crystals may be assembled by engineering the shape and charge of polymeric additives, which act as structure-directing agents (SDAs). Using these agents, only a single desired polymorph may be obtained from a crystallizing mixture of colloids and polymers, which would otherwise result in a defective crystal in the absence of these agents. Building on previous work, which demonstrated this principle in the limiting case of high-density, close-packed crystals, we have now achieved this control over low-density, open crystals, which have broad utility especially in optical applications. These results reveal the general utility of the SDA paradigm in assembling tailored colloidal crystals, which represents a new design method that does not rely on any modification of the colloids themselves.