Grace Y Yi, Ying Yan, Xiaomei Liao, Donna Spiegelman
{"title":"Parametric Regression Analysis with Covariate Misclassification in Main Study/Validation Study Designs.","authors":"Grace Y Yi, Ying Yan, Xiaomei Liao, Donna Spiegelman","doi":"10.1515/ijb-2017-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement error and misclassification have long been a concern in many fields, including medicine, administrative health care data, epidemiology, and survey sampling. It is known that measurement error and misclassification may seriously degrade the quality of estimation and inference, and should be avoided whenever possible. However, in practice, it is inevitable that measurements contain error for a variety of reasons. It is thus necessary to develop statistical strategies to cope with this issue. Although many inference methods have been proposed in the literature to address mis-measurement effects, some important issues remain unexplored. Typically, it is generally unclear how the available methods may perform relative to each other. In this paper, capitalizing on the unique feature of discrete variables, we consider settings with misclassified binary covariates and investigate issues concerning covariate misclassification; our development parallels available strategies for handling measurement error in continuous covariates. Under a unified framework, we examine a number of valid inferential procedures for practical settings where a validation study, either internal or external, is available besides a main study. Furthermore, we compare the relative performance of these methods and make practical recommendations.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2017-0002","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2017-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Measurement error and misclassification have long been a concern in many fields, including medicine, administrative health care data, epidemiology, and survey sampling. It is known that measurement error and misclassification may seriously degrade the quality of estimation and inference, and should be avoided whenever possible. However, in practice, it is inevitable that measurements contain error for a variety of reasons. It is thus necessary to develop statistical strategies to cope with this issue. Although many inference methods have been proposed in the literature to address mis-measurement effects, some important issues remain unexplored. Typically, it is generally unclear how the available methods may perform relative to each other. In this paper, capitalizing on the unique feature of discrete variables, we consider settings with misclassified binary covariates and investigate issues concerning covariate misclassification; our development parallels available strategies for handling measurement error in continuous covariates. Under a unified framework, we examine a number of valid inferential procedures for practical settings where a validation study, either internal or external, is available besides a main study. Furthermore, we compare the relative performance of these methods and make practical recommendations.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.