Application of Concordance Probability Estimate to Predict Conversion from Mild Cognitive Impairment to Alzheimer's Disease.

Q3 Medicine
Biostatistics and Epidemiology Pub Date : 2017-01-01 Epub Date: 2017-07-31 DOI:10.1080/24709360.2017.1342187
Xiaoxia Han, Yilong Zhang, Yongzhao Shao
{"title":"Application of Concordance Probability Estimate to Predict Conversion from Mild Cognitive Impairment to Alzheimer's Disease.","authors":"Xiaoxia Han,&nbsp;Yilong Zhang,&nbsp;Yongzhao Shao","doi":"10.1080/24709360.2017.1342187","DOIUrl":null,"url":null,"abstract":"<p><p>Subjects with mild cognitive impairment (MCI) have a substantially increased risk of developing dementia due to Alzheimer's disease (AD). Identifying MCI subjects who have high progression risk to AD is important in clinical management. Existing risk prediction models of AD among MCI subjects generally use either the AUC or Harrell's C-statistic to evaluate predictive accuracy. AUC is aimed at binary outcome and Harrell's C-statistic depends on the unknown censoring distribution. Gönen & Heller's K-index, also known as concordance probability estimate (CPE), is another measure of overall predictive accuracy for Cox proportional hazards (PH) models, which does not depend on censoring distribution. As a comprehensive example, using Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we built a Cox PH model to predict the conversion from MCI to AD where the prognostic accuracy was evaluated using K-index.</p>","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"1 1","pages":"105-118"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2017.1342187","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2017.1342187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8

Abstract

Subjects with mild cognitive impairment (MCI) have a substantially increased risk of developing dementia due to Alzheimer's disease (AD). Identifying MCI subjects who have high progression risk to AD is important in clinical management. Existing risk prediction models of AD among MCI subjects generally use either the AUC or Harrell's C-statistic to evaluate predictive accuracy. AUC is aimed at binary outcome and Harrell's C-statistic depends on the unknown censoring distribution. Gönen & Heller's K-index, also known as concordance probability estimate (CPE), is another measure of overall predictive accuracy for Cox proportional hazards (PH) models, which does not depend on censoring distribution. As a comprehensive example, using Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we built a Cox PH model to predict the conversion from MCI to AD where the prognostic accuracy was evaluated using K-index.

Abstract Image

一致性概率估计在预测轻度认知障碍向阿尔茨海默病转化中的应用。
患有轻度认知障碍(MCI)的受试者因阿尔茨海默病(AD)而发生痴呆的风险大大增加。识别MCI受试者进展为AD的高风险在临床管理中很重要。现有MCI受试者AD风险预测模型一般采用AUC或Harrell’s c统计量来评估预测准确性。AUC针对的是二元结果,Harrell的c统计量依赖于未知的审查分布。Gönen & Heller的k指数,也被称为一致性概率估计(CPE),是Cox比例风险(PH)模型总体预测准确性的另一种衡量标准,它不依赖于审查分布。作为一个综合的例子,我们使用阿尔茨海默病神经影像学倡议(ADNI)数据集,建立了Cox PH模型来预测从MCI到AD的转换,其中使用k指数评估预后准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信