Quadrics and Scherk towers.

Pub Date : 2018-01-01 Epub Date: 2017-07-03 DOI:10.1007/s00605-017-1075-5
S Fujimori, U Hertrich-Jeromin, M Kokubu, M Umehara, K Yamada
{"title":"Quadrics and Scherk towers.","authors":"S Fujimori,&nbsp;U Hertrich-Jeromin,&nbsp;M Kokubu,&nbsp;M Umehara,&nbsp;K Yamada","doi":"10.1007/s00605-017-1075-5","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the relation between quadrics and their Christoffel duals on the one hand, and certain zero mean curvature surfaces and their Gauss maps on the other hand. To study the relation between timelike minimal surfaces and the Christoffel duals of 1-sheeted hyperboloids we introduce para-holomorphic elliptic functions. The curves of type change for real isothermic surfaces of mixed causal type turn out to be aligned with the real curvature line net.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-017-1075-5","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-017-1075-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate the relation between quadrics and their Christoffel duals on the one hand, and certain zero mean curvature surfaces and their Gauss maps on the other hand. To study the relation between timelike minimal surfaces and the Christoffel duals of 1-sheeted hyperboloids we introduce para-holomorphic elliptic functions. The curves of type change for real isothermic surfaces of mixed causal type turn out to be aligned with the real curvature line net.

Abstract Image

Abstract Image

Abstract Image

分享
查看原文
二次曲线和舍尔克塔。
我们一方面研究了二次曲面和它们的克里斯托费尔对偶之间的关系,另一方面研究了某些零平均曲率曲面和它们的高斯映射之间的关系。为了研究类时极小曲面与1片双曲面的克里斯托费尔对偶之间的关系,引入了准全纯椭圆函数。混合因果型实际等温线面的类型变化曲线与实际曲率线网一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信