Data Quality Assessment and Multi-Organizational Reporting: Tools to Enhance Network Knowledge.

Sanchita Sengupta, Don Bachman, Reesa Laws, Gwyn Saylor, Jenny Staab, Daniel Vaughn, Qing Zhou, Alan Bauck
{"title":"Data Quality Assessment and Multi-Organizational Reporting: Tools to Enhance Network Knowledge.","authors":"Sanchita Sengupta,&nbsp;Don Bachman,&nbsp;Reesa Laws,&nbsp;Gwyn Saylor,&nbsp;Jenny Staab,&nbsp;Daniel Vaughn,&nbsp;Qing Zhou,&nbsp;Alan Bauck","doi":"10.5334/egems.280","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Multi-organizational research requires a multi-organizational data quality assessment (DQA) process that combines and compares data across participating organizations. We demonstrate how such a DQA approach complements traditional checks of internal reliability and validity by allowing for assessments of data consistency and the evaluation of data patterns in the absence of an external \"gold standard.\"</p><p><strong>Methods: </strong>We describe the DQA process employed by the Data Coordinating Center (DCC) for Kaiser Permanente's (KP) Center for Effectiveness and Safety Research (CESR). We emphasize the CESR DQA reporting system that compares data summaries from the eight KP organizations in a consistent, standardized manner.</p><p><strong>Results: </strong>We provide examples of multi-organization comparisons from DQA to confirm expectations about different aspects of data quality. These include: 1) comparison of direct data extraction from the electronic health records (EHR) and 2) comparison of non-EHR data from disparate sources.</p><p><strong>Discussion: </strong>The CESR DCC has developed codes and procedures for efficiently implementing and reporting DQA. The CESR DCC approach is to 1) distribute DQA tools to empower data managers at each organization to assess their data quality at any time, 2) summarize and disseminate findings to address data shortfalls or document idiosyncrasies, and 3) engage data managers and end-users in an exchange of knowledge about the quality and its fitness for use.</p><p><strong>Conclusion: </strong>The KP CESR DQA model is applicable to networks hoping to improve data quality. The multi-organizational reporting system promotes transparency of DQA, adds to network knowledge about data quality, and informs research.</p>","PeriodicalId":72880,"journal":{"name":"EGEMS (Washington, DC)","volume":"7 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450241/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EGEMS (Washington, DC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/egems.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Objective: Multi-organizational research requires a multi-organizational data quality assessment (DQA) process that combines and compares data across participating organizations. We demonstrate how such a DQA approach complements traditional checks of internal reliability and validity by allowing for assessments of data consistency and the evaluation of data patterns in the absence of an external "gold standard."

Methods: We describe the DQA process employed by the Data Coordinating Center (DCC) for Kaiser Permanente's (KP) Center for Effectiveness and Safety Research (CESR). We emphasize the CESR DQA reporting system that compares data summaries from the eight KP organizations in a consistent, standardized manner.

Results: We provide examples of multi-organization comparisons from DQA to confirm expectations about different aspects of data quality. These include: 1) comparison of direct data extraction from the electronic health records (EHR) and 2) comparison of non-EHR data from disparate sources.

Discussion: The CESR DCC has developed codes and procedures for efficiently implementing and reporting DQA. The CESR DCC approach is to 1) distribute DQA tools to empower data managers at each organization to assess their data quality at any time, 2) summarize and disseminate findings to address data shortfalls or document idiosyncrasies, and 3) engage data managers and end-users in an exchange of knowledge about the quality and its fitness for use.

Conclusion: The KP CESR DQA model is applicable to networks hoping to improve data quality. The multi-organizational reporting system promotes transparency of DQA, adds to network knowledge about data quality, and informs research.

Abstract Image

Abstract Image

Abstract Image

数据质量评估和多组织报告:增强网络知识的工具。
目的:多组织研究需要一个多组织数据质量评估(DQA)过程,该过程结合并比较参与组织的数据。我们演示了这种DQA方法如何通过允许在没有外部“金标准”的情况下评估数据一致性和评估数据模式来补充传统的内部可靠性和有效性检查。方法:我们描述了数据协调中心(DCC)为Kaiser Permanente (KP)有效性和安全性研究中心(CESR)所采用的DQA过程。我们强调CESR DQA报告系统,该系统以一致、标准化的方式比较八个KP组织的数据摘要。结果:我们提供了来自DQA的多组织比较的例子,以确认对数据质量不同方面的期望。其中包括:1)比较从电子健康记录(EHR)中直接提取的数据;2)比较来自不同来源的非电子健康记录数据。讨论:CESR DCC已经开发了有效实施和报告DQA的代码和程序。CESR DCC方法是:1)分发DQA工具,授权每个组织的数据管理人员随时评估其数据质量;2)总结和传播发现,以解决数据不足或文档特性;3)让数据管理人员和最终用户交流关于质量及其适用性的知识。结论:KP CESR DQA模型适用于希望提高数据质量的网络。多组织报告系统提高了DQA的透明度,增加了关于数据质量的网络知识,并为研究提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信