Rationality for isobaric automorphic representations: the CM-case.

Pub Date : 2018-01-01 Epub Date: 2018-05-21 DOI:10.1007/s00605-018-1188-5
Harald Grobner
{"title":"Rationality for isobaric automorphic representations: the CM-case.","authors":"Harald Grobner","doi":"10.1007/s00605-018-1188-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this note we prove a simultaneous extension of the author's joint result with M. Harris for critical values of Rankin-Selberg <i>L</i>-functions <math><mrow><mi>L</mi> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>Π</mi> <mo>×</mo> <msup><mi>Π</mi> <mo>'</mo></msup> <mo>)</mo></mrow> </math> (Grobner and Harris in J Inst Math Jussieu 15:711-769, 2016, Thm. 3.9) to (i) general CM-fields <i>F</i> and (ii) cohomological automorphic representations <math> <mrow><msup><mi>Π</mi> <mo>'</mo></msup> <mo>=</mo> <msub><mi>Π</mi> <mn>1</mn></msub> <mo>⊞</mo> <mo>⋯</mo> <mo>⊞</mo> <msub><mi>Π</mi> <mi>k</mi></msub> </mrow> </math> which are the isobaric sum of unitary cuspidal automorphic representations <math><msub><mi>Π</mi> <mi>i</mi></msub> </math> of general linear groups of arbitrary rank over <i>F</i>. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457-489, 2016; Int Math Res Not 2:334-372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553-637, 2005).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-018-1188-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we prove a simultaneous extension of the author's joint result with M. Harris for critical values of Rankin-Selberg L-functions L ( s , Π × Π ' ) (Grobner and Harris in J Inst Math Jussieu 15:711-769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations Π ' = Π 1 Π k which are the isobaric sum of unitary cuspidal automorphic representations Π i of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457-489, 2016; Int Math Res Not 2:334-372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553-637, 2005).

分享
查看原文
等边自动表征的合理性:CM 案例。
在本注释中,我们同时证明了作者与 M. Harris 针对 Rankin-Selberg L 函数 L ( s , Π × Π ' ) 临界值的联合结果(Grobner 和 Harris 在 J Inst Math Jussieu 15:711-769, 2016, Thm.9)到(i)一般 CM 场 F 和(ii)同调自形表示 Π ' = Π 1 ⋯ ⊞ Π k,它们是 F 上任意秩的一般线性群的单元簇自形表示 Π i 的等价和。从这个意义上说,这些注释的主要结果,参见定理 1.9,是对 Raghuram (Forum Math 28:457-489, 2016; Int Math Res Not 2:334-372, 2010. https://doi.org/10.1093/imrn/rnp127) 和 Mahnkopf (J Inst Math Jussieu 4:553-637, 2005) 中主要结果的概括和补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信