DEEP BV: A FULLY AUTOMATED SYSTEM FOR BRAIN VENTRICLE LOCALIZATION AND SEGMENTATION IN 3D ULTRASOUND IMAGES OF EMBRYONIC MICE.

Ziming Qiu, Jack Langerman, Nitin Nair, Orlando Aristizabal, Jonathan Mamou, Daniel H Turnbull, Jeffrey Ketterling, Yao Wang
{"title":"DEEP BV: A FULLY AUTOMATED SYSTEM FOR BRAIN VENTRICLE LOCALIZATION AND SEGMENTATION IN 3D ULTRASOUND IMAGES OF EMBRYONIC MICE.","authors":"Ziming Qiu,&nbsp;Jack Langerman,&nbsp;Nitin Nair,&nbsp;Orlando Aristizabal,&nbsp;Jonathan Mamou,&nbsp;Daniel H Turnbull,&nbsp;Jeffrey Ketterling,&nbsp;Yao Wang","doi":"10.1109/SPMB.2018.8615610","DOIUrl":null,"url":null,"abstract":"<p><p>Volumetric analysis of brain ventricle (BV) structure is a key tool in the study of central nervous system development in embryonic mice. High-frequency ultrasound (HFU) is the only non-invasive, real-time modality available for rapid volumetric imaging of embryos in utero. However, manual segmentation of the BV from HFU volumes is tedious, time-consuming, and requires specialized expertise. In this paper, we propose a novel deep learning based BV segmentation system for whole-body HFU images of mouse embryos. Our fully automated system consists of two modules: localization and segmentation. It first applies a volumetric convolutional neural network on a 3D sliding window over the entire volume to identify a 3D bounding box containing the entire BV. It then employs a fully convolutional network to segment the detected bounding box into BV and background. The system achieves a Dice Similarity Coefficient (DSC) of 0.8956 for BV segmentation on an unseen 111 HFU volume test set surpassing the previous state-of-the-art method (DSC of 0.7119) by a margin of 25%.</p>","PeriodicalId":91431,"journal":{"name":"... IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE Signal Processing in Medicine and Biology Symposium","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/SPMB.2018.8615610","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE Signal Processing in Medicine and Biology Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB.2018.8615610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Volumetric analysis of brain ventricle (BV) structure is a key tool in the study of central nervous system development in embryonic mice. High-frequency ultrasound (HFU) is the only non-invasive, real-time modality available for rapid volumetric imaging of embryos in utero. However, manual segmentation of the BV from HFU volumes is tedious, time-consuming, and requires specialized expertise. In this paper, we propose a novel deep learning based BV segmentation system for whole-body HFU images of mouse embryos. Our fully automated system consists of two modules: localization and segmentation. It first applies a volumetric convolutional neural network on a 3D sliding window over the entire volume to identify a 3D bounding box containing the entire BV. It then employs a fully convolutional network to segment the detected bounding box into BV and background. The system achieves a Dice Similarity Coefficient (DSC) of 0.8956 for BV segmentation on an unseen 111 HFU volume test set surpassing the previous state-of-the-art method (DSC of 0.7119) by a margin of 25%.

Abstract Image

Abstract Image

Abstract Image

DEEP-BV:一个用于胚胎小鼠三维超声图像中脑室定位和分割的全自动系统。
脑室结构的容量分析是研究胚胎小鼠中枢神经系统发育的关键工具。高频超声(HFU)是唯一可用于子宫内胚胎快速体积成像的非侵入性实时模式。然而,手动从HFU卷中分割BV是乏味、耗时的,并且需要专业知识。在本文中,我们提出了一种新的基于深度学习的小鼠胚胎全身HFU图像BV分割系统。我们的全自动化系统由两个模块组成:定位和分割。它首先在整个体积上的3D滑动窗口上应用体积卷积神经网络来识别包含整个BV的3D边界框。然后使用全卷积网络将检测到的边界框分割为BV和背景。该系统在一个看不见的111 HFU体积测试集上实现了0.8956的骰子相似系数(DSC)BV分割,比以前最先进的方法(DSC为0.7119)高出25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信