HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL.

Alireza Mohammadi, Robert D Gregg
{"title":"HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL.","authors":"Alireza Mohammadi, Robert D Gregg","doi":"10.1115/DSCC2018-9061","DOIUrl":null,"url":null,"abstract":"<p><p>Having unified representations of human walking gait data is of paramount importance for wearable robot control. In the rehabilitation robotics literature, control approaches that unify the gait cycle of wearable robots are more appealing than the conventional approaches that rely on dividing the gait cycle into several periods, each with their own distinct controllers. In this article we propose employing algebraic curves to represent human walking data for wearable robot controller design. In order to generate algebraic curves from human walking data, we employ the 3L fitting algorithm, a tool developed in the pattern recognition literature for fitting implicit polynomial curves to given datasets. For an impedance model of the knee joint motion driven by the hip angle signal, we provide conditions by which the generated algebraic curves satisfy a robust relative degree condition throughout the entire walking gait cycle. The robust relative degree property makes the algebraic curve representation of walking gaits amenable to various nonlinear output tracking controller design techniques.</p>","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6424523/pdf/nihms-977682.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DSCC2018-9061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Having unified representations of human walking gait data is of paramount importance for wearable robot control. In the rehabilitation robotics literature, control approaches that unify the gait cycle of wearable robots are more appealing than the conventional approaches that rely on dividing the gait cycle into several periods, each with their own distinct controllers. In this article we propose employing algebraic curves to represent human walking data for wearable robot controller design. In order to generate algebraic curves from human walking data, we employ the 3L fitting algorithm, a tool developed in the pattern recognition literature for fitting implicit polynomial curves to given datasets. For an impedance model of the knee joint motion driven by the hip angle signal, we provide conditions by which the generated algebraic curves satisfy a robust relative degree condition throughout the entire walking gait cycle. The robust relative degree property makes the algebraic curve representation of walking gaits amenable to various nonlinear output tracking controller design techniques.

Abstract Image

用于可穿戴机器人控制的人类代数曲线。
统一表示人类行走步态数据对于可穿戴机器人控制至关重要。在康复机器人文献中,统一可穿戴机器人步态周期的控制方法比传统方法更有吸引力,因为传统方法将步态周期分为几个阶段,每个阶段都有各自不同的控制器。在本文中,我们建议采用代数曲线来表示人类行走数据,以用于可穿戴机器人控制器的设计。为了从人类行走数据中生成代数曲线,我们采用了 3L 拟合算法,这是一种在模式识别文献中开发的工具,用于对给定数据集进行隐式多项式曲线拟合。对于由髋关节角度信号驱动的膝关节运动阻抗模型,我们提供了生成的代数曲线在整个行走步态周期中满足稳健相对度条件的条件。稳健的相对度属性使得行走步态的代数曲线表示适合各种非线性输出跟踪控制器设计技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信