A genomic data mining pipeline for 15 species of the genus Olea.

EMBnet.journal Pub Date : 2019-01-01 Epub Date: 2019-05-22 DOI:10.14806/ej.24.0.922
Constantinos Salis, Eleni Papakonstantinou, Katerina Pierouli, Athanasios Mitsis, Lia Basdeki, Vasileios Megalooikonomou, Dimitrios Vlachakis, Marianna Hagidimitriou
{"title":"A genomic data mining pipeline for 15 species of the genus <i>Olea</i>.","authors":"Constantinos Salis,&nbsp;Eleni Papakonstantinou,&nbsp;Katerina Pierouli,&nbsp;Athanasios Mitsis,&nbsp;Lia Basdeki,&nbsp;Vasileios Megalooikonomou,&nbsp;Dimitrios Vlachakis,&nbsp;Marianna Hagidimitriou","doi":"10.14806/ej.24.0.922","DOIUrl":null,"url":null,"abstract":"<p><p>In the big data era, conventional bioinformatics seems to fail in managing the full extent of the available genomic information. The current study is focused on olive tree species and the collection and analysis of genetic and genomic data, which are fragmented in various depositories. Extra virgin olive oil is classified as a medical food, due to nutraceutical benefits and its protective properties against cancer, cardiovascular diseases, age-related diseases, neurodegenerative disorders, and many other diseases. Extensive studies have reported the benefits of olive oil on human health. However, available data at the nucleotide sequence level are highly unstructured. Towards this aim, we describe an <i>in-silico</i> approach that combines methods from data mining and machine learning pipelines to ontology classification and semantic annotation. Fusing and analysing all available olive tree data is a step of uttermost importance in classifying and characterising the various cultivars, towards a comprehensive approach under the context of food safety and public health.</p>","PeriodicalId":72893,"journal":{"name":"EMBnet.journal","volume":"24 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583798/pdf/nihms-1031557.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBnet.journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14806/ej.24.0.922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the big data era, conventional bioinformatics seems to fail in managing the full extent of the available genomic information. The current study is focused on olive tree species and the collection and analysis of genetic and genomic data, which are fragmented in various depositories. Extra virgin olive oil is classified as a medical food, due to nutraceutical benefits and its protective properties against cancer, cardiovascular diseases, age-related diseases, neurodegenerative disorders, and many other diseases. Extensive studies have reported the benefits of olive oil on human health. However, available data at the nucleotide sequence level are highly unstructured. Towards this aim, we describe an in-silico approach that combines methods from data mining and machine learning pipelines to ontology classification and semantic annotation. Fusing and analysing all available olive tree data is a step of uttermost importance in classifying and characterising the various cultivars, towards a comprehensive approach under the context of food safety and public health.

Abstract Image

油橄榄属15种基因组数据挖掘管道。
在大数据时代,传统的生物信息学似乎无法管理所有可用的基因组信息。目前的研究主要集中在橄榄树种类和遗传和基因组数据的收集和分析,这些数据分散在不同的存储库中。特级初榨橄榄油被归类为医疗食品,由于其营养价值和对癌症、心血管疾病、年龄相关疾病、神经退行性疾病和许多其他疾病的保护作用。大量研究报告了橄榄油对人体健康的益处。然而,在核苷酸序列水平上的可用数据是高度非结构化的。为了实现这一目标,我们描述了一种将数据挖掘和机器学习管道方法结合到本体分类和语义注释的计算机方法。在食品安全和公共卫生的背景下,融合和分析所有可用的橄榄树数据是对各种品种进行分类和表征的最重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信