An Ensemble Feature Selection Method for Biomarker Discovery.

Aliasghar Shahrjooihaghighi, Hichem Frigui, Xiang Zhang, Xiaoli Wei, Biyun Shi, Ameni Trabelsi
{"title":"An Ensemble Feature Selection Method for Biomarker Discovery.","authors":"Aliasghar Shahrjooihaghighi,&nbsp;Hichem Frigui,&nbsp;Xiang Zhang,&nbsp;Xiaoli Wei,&nbsp;Biyun Shi,&nbsp;Ameni Trabelsi","doi":"10.1109/ISSPIT.2017.8388679","DOIUrl":null,"url":null,"abstract":"<p><p>Feature selection in Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomics data (biomarker discovery) have become an important topic for machine learning researchers. High dimensionality and small sample size of LC-MS data make feature selection a challenging task. The goal of biomarker discovery is to select the few most discriminative features among a large number of irreverent ones. To improve the reliability of the discovered biomarkers, we use an ensemble-based approach. Ensemble learning can improve the accuracy of feature selection by combining multiple algorithms that have complementary information. In this paper, we propose an ensemble approach to combine the results of filter-based feature selection methods. To evaluate the proposed approach, we compared it to two commonly used methods, t-test and PLS-DA, using a real data set.</p>","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"2017 ","pages":"416-421"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ISSPIT.2017.8388679","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2017.8388679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Feature selection in Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomics data (biomarker discovery) have become an important topic for machine learning researchers. High dimensionality and small sample size of LC-MS data make feature selection a challenging task. The goal of biomarker discovery is to select the few most discriminative features among a large number of irreverent ones. To improve the reliability of the discovered biomarkers, we use an ensemble-based approach. Ensemble learning can improve the accuracy of feature selection by combining multiple algorithms that have complementary information. In this paper, we propose an ensemble approach to combine the results of filter-based feature selection methods. To evaluate the proposed approach, we compared it to two commonly used methods, t-test and PLS-DA, using a real data set.

Abstract Image

Abstract Image

Abstract Image

一种用于生物标志物发现的集合特征选择方法。
基于液相色谱-质谱(LC-MS)的代谢组学数据中的特征选择(生物标志物发现)已成为机器学习研究人员的一个重要课题。LC-MS数据的高维度和小样本量使特征选择成为一项具有挑战性的任务。生物标志物发现的目标是在大量不敬的特征中选择少数最具鉴别力的特征。为了提高所发现的生物标志物的可靠性,我们使用了一种基于集合的方法。集成学习可以通过组合具有互补信息的多个算法来提高特征选择的准确性。在本文中,我们提出了一种集成方法来结合基于滤波器的特征选择方法的结果。为了评估所提出的方法,我们使用真实数据集将其与两种常用的方法进行了比较,即t检验和PLS-DA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信