{"title":"Rewriting the (tran)script: Application to spinal muscular atrophy.","authors":"Hasane Ratni, Lutz Mueller, Martin Ebeling","doi":"10.1016/bs.pmch.2018.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting RNA drastically expands our target space to therapeutically modulate numerous cellular processes implicated in human diseases. Of particular interest, drugging pre-mRNA splicing appears a very viable strategy; to control levels of splicing product by promoting the inclusion or exclusion of exons. After describing the concept of \"splicing modulation\", this chapter will cover the outstanding progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of spinal muscular atrophy using two therapeutic modalities: splice switching oligonucleotides and small molecules. This review discusses the vital but feasible requirement for such drugs to deliver selectivity, and critical safety aspects are highlighted. Transformational medicines such as those developed to treat SMA are likely just the beginning of this story.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.pmch.2018.12.003","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.pmch.2018.12.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 5
Abstract
Targeting RNA drastically expands our target space to therapeutically modulate numerous cellular processes implicated in human diseases. Of particular interest, drugging pre-mRNA splicing appears a very viable strategy; to control levels of splicing product by promoting the inclusion or exclusion of exons. After describing the concept of "splicing modulation", this chapter will cover the outstanding progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of spinal muscular atrophy using two therapeutic modalities: splice switching oligonucleotides and small molecules. This review discusses the vital but feasible requirement for such drugs to deliver selectivity, and critical safety aspects are highlighted. Transformational medicines such as those developed to treat SMA are likely just the beginning of this story.
期刊介绍:
This series has a long established reputation for excellent coverage of almost every facet of Medicinal Chemistry and is one of the most respected and instructive sources of information on the subject. The latest volume certifies to the continuing success of a unique series reflecting current progress in a broadly developing field of science.