A cut finite element method for elliptic bulk problems with embedded surfaces.

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Erik Burman, Peter Hansbo, Mats G Larson, David Samvin
{"title":"A cut finite element method for elliptic bulk problems with embedded surfaces.","authors":"Erik Burman,&nbsp;Peter Hansbo,&nbsp;Mats G Larson,&nbsp;David Samvin","doi":"10.1007/s13137-019-0120-z","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an unfitted finite element method for flow in fractured porous media. The coupling across the fracture uses a Nitsche type mortaring, allowing for an accurate representation of the jump in the normal component of the gradient of the discrete solution across the fracture. The flow field in the fracture is modelled simultaneously, using the average of traces of the bulk variables on the fractures. In particular the Laplace-Beltrami operator for the transport in the fracture is included using the average of the projection on the tangential plane of the fracture of the trace of the bulk gradient. Optimal order error estimates are proven under suitable regularity assumptions on the domain geometry. The extension to the case of bifurcating fractures is discussed. Finally the theory is illustrated by a series of numerical examples.</p>","PeriodicalId":44484,"journal":{"name":"GEM-International Journal on Geomathematics","volume":"10 1","pages":"10"},"PeriodicalIF":1.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13137-019-0120-z","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEM-International Journal on Geomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13137-019-0120-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

We propose an unfitted finite element method for flow in fractured porous media. The coupling across the fracture uses a Nitsche type mortaring, allowing for an accurate representation of the jump in the normal component of the gradient of the discrete solution across the fracture. The flow field in the fracture is modelled simultaneously, using the average of traces of the bulk variables on the fractures. In particular the Laplace-Beltrami operator for the transport in the fracture is included using the average of the projection on the tangential plane of the fracture of the trace of the bulk gradient. Optimal order error estimates are proven under suitable regularity assumptions on the domain geometry. The extension to the case of bifurcating fractures is discussed. Finally the theory is illustrated by a series of numerical examples.

Abstract Image

Abstract Image

Abstract Image

具有嵌入曲面的椭圆体问题的割有限元方法。
我们提出了一种求解裂隙多孔介质中流动的不适配有限元方法。穿过裂缝的耦合使用Nitsche型mortaring,从而能够准确表示穿过裂缝的离散解的梯度的法向分量的跳跃。使用裂缝上体积变量轨迹的平均值,同时对裂缝中的流场进行建模。特别地,使用体积梯度轨迹在裂缝切向平面上的投影的平均值,包括用于裂缝中传输的拉普拉斯-贝尔特拉米算子。在域几何上的适当正则性假设下,证明了最优阶误差估计。讨论了分叉裂缝情况的扩展。最后通过一系列数值算例对该理论进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GEM-International Journal on Geomathematics
GEM-International Journal on Geomathematics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
3.50
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信