Asymptotics of Partial Density Functions for Divisors.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2016-09-19 DOI:10.1007/s12220-016-9741-8
Julius Ross, Michael Singer
{"title":"Asymptotics of Partial Density Functions for Divisors.","authors":"Julius Ross,&nbsp;Michael Singer","doi":"10.1007/s12220-016-9741-8","DOIUrl":null,"url":null,"abstract":"<p><p>We study the asymptotic behaviour of the partial density function associated to sections of a positive hermitian line bundle that vanish to a particular order along a fixed divisor <i>Y</i>. Assuming the data in question is invariant under an <math><msup><mi>S</mi> <mn>1</mn></msup> </math> -action (locally around <i>Y</i>) we prove that this density function has a distributional asymptotic expansion that is in fact smooth upon passing to a suitable real blow-up. Moreover we recover the existence of the \"forbidden region\" <i>R</i> on which the density function is exponentially small, and prove that it has an \"error-function\" behaviour across the boundary <math><mrow><mi>∂</mi> <mi>R</mi></mrow> </math> . As an illustrative application, we use this to study a certain natural function that can be associated to a divisor in a Kähler manifold.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9741-8","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-016-9741-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

Abstract

We study the asymptotic behaviour of the partial density function associated to sections of a positive hermitian line bundle that vanish to a particular order along a fixed divisor Y. Assuming the data in question is invariant under an S 1 -action (locally around Y) we prove that this density function has a distributional asymptotic expansion that is in fact smooth upon passing to a suitable real blow-up. Moreover we recover the existence of the "forbidden region" R on which the density function is exponentially small, and prove that it has an "error-function" behaviour across the boundary R . As an illustrative application, we use this to study a certain natural function that can be associated to a divisor in a Kähler manifold.

Abstract Image

Abstract Image

Abstract Image

除数的偏密度函数的渐近性。
我们研究了沿固定除数Y以特定阶消失的正厄米线束部分的偏密度函数的渐近行为。假设所讨论的数据在s1作用下(局部围绕Y)是不变的,我们证明了该密度函数具有一个分布渐近展开,该展开在传递到合适的实爆炸时实际上是光滑的。此外,我们恢复了密度函数指数小的“禁域”R的存在性,并证明它在边界∂R上具有“误差函数”行为。作为一个说明性的应用,我们使用它来研究可以与Kähler流形中的除数相关联的某个自然函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信