Medial Axis and Singularities.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2017-02-28 DOI:10.1007/s12220-017-9763-x
Lev Birbrair, Maciej P Denkowski
{"title":"Medial Axis and Singularities.","authors":"Lev Birbrair,&nbsp;Maciej P Denkowski","doi":"10.1007/s12220-017-9763-x","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is devoted to the study of the <i>medial axes</i> of sets definable in polynomially bounded o-minimal structures, i.e. the sets of points with more than one closest point with respect to the Euclidean distance. Our point of view is that of singularity theory. While trying to make the paper self-contained, we gather here also a large bunch of basic results. Our main interest, however, goes to the characterization of those singular points of a definable, closed set <math><mrow><mi>X</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> , which are reached by the medial axis.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9763-x","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-017-9763-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

Abstract

This paper is devoted to the study of the medial axes of sets definable in polynomially bounded o-minimal structures, i.e. the sets of points with more than one closest point with respect to the Euclidean distance. Our point of view is that of singularity theory. While trying to make the paper self-contained, we gather here also a large bunch of basic results. Our main interest, however, goes to the characterization of those singular points of a definable, closed set X R n , which are reached by the medial axis.

Abstract Image

Abstract Image

Abstract Image

中轴和奇点。
本文研究了多项式有界0 -极小结构中可定义的集合的中轴,即在欧氏距离上有一个以上最近点的点的集合。我们的观点是奇点理论。在试图使论文自给自足的同时,我们在这里也收集了大量的基本结果。然而,我们主要感兴趣的是对一个可定义的闭集X∧R n的奇异点的刻画,这些奇异点是由中间轴到达的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信