L h 2 -Functions in Unbounded Balanced Domains.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2017-01-02 DOI:10.1007/s12220-016-9754-3
Peter Pflug, Włodzimierz Zwonek
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math><ns0:msubsup><ns0:mi>L</ns0:mi> <ns0:mi>h</ns0:mi> <ns0:mn>2</ns0:mn></ns0:msubsup> </ns0:math> -Functions in Unbounded Balanced Domains.","authors":"Peter Pflug,&nbsp;Włodzimierz Zwonek","doi":"10.1007/s12220-016-9754-3","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate problems related with the existence of square integrable holomorphic functions on (unbounded) balanced domains. In particular, we solve the problem of Wiegerinck for balanced domains in dimension two. We also give a description of <math><msubsup><mi>L</mi> <mi>h</mi> <mn>2</mn></msubsup> </math> -domains of holomorphy in the class of balanced domains and present a purely algebraic criterion for homogeneous polynomials to be square integrable in a pseudoconvex balanced domain in <math> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </math> . This allows easily to decide which pseudoconvex balanced domain in <math> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </math> has a positive Bergman kernel and which admits the Bergman metric.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9754-3","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-016-9754-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We investigate problems related with the existence of square integrable holomorphic functions on (unbounded) balanced domains. In particular, we solve the problem of Wiegerinck for balanced domains in dimension two. We also give a description of L h 2 -domains of holomorphy in the class of balanced domains and present a purely algebraic criterion for homogeneous polynomials to be square integrable in a pseudoconvex balanced domain in C 2 . This allows easily to decide which pseudoconvex balanced domain in C 2 has a positive Bergman kernel and which admits the Bergman metric.

l2 -无界平衡域上的函数。
研究了(无界)平衡域上平方可积全纯函数的存在性问题。特别地,我们解决了二维平衡域的Wiegerinck问题。在平衡域类中给出了全纯的l2域的描述,并给出了齐次多项式在c2的拟凸平衡域上平方可积的一个纯代数判据。这可以很容易地决定在c2中哪个伪凸平衡区域有一个正的Bergman核,哪个允许Bergman度规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信