Linh Tran, Constantin Yiannoutsos, Kara Wools-Kaloustian, Abraham Siika, Mark van der Laan, Maya Petersen
{"title":"Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.","authors":"Linh Tran, Constantin Yiannoutsos, Kara Wools-Kaloustian, Abraham Siika, Mark van der Laan, Maya Petersen","doi":"10.1515/ijb-2017-0054","DOIUrl":null,"url":null,"abstract":"<p><p>A number of sophisticated estimators of longitudinal effects have been proposed for estimating the intervention-specific mean outcome. However, there is a relative paucity of research comparing these methods directly to one another. In this study, we compare various approaches to estimating a causal effect in a longitudinal treatment setting using both simulated data and data measured from a human immunodeficiency virus cohort. Six distinct estimators are considered: (i) an iterated conditional expectation representation, (ii) an inverse propensity weighted method, (iii) an augmented inverse propensity weighted method, (iv) a double robust iterated conditional expectation estimator, (v) a modified version of the double robust iterated conditional expectation estimator, and (vi) a targeted minimum loss-based estimator. The details of each estimator and its implementation are presented along with nuisance parameter estimation details, which include potentially pooling the observed data across all subjects regardless of treatment history and using data adaptive machine learning algorithms. Simulations are constructed over six time points, with each time point steadily increasing in positivity violations. Estimation is carried out for both the simulations and applied example using each of the six estimators under both stratified and pooled approaches of nuisance parameter estimation. Simulation results show that double robust estimators remained without meaningful bias as long as at least one of the two nuisance parameters were estimated with a correctly specified model. Under full misspecification, the bias of the double robust estimators remained better than that of the inverse propensity estimator under misspecification, but worse than the iterated conditional expectation estimator. Weighted estimators tended to show better performance than the covariate estimators. As positivity violations increased, the mean squared error and bias of all estimators considered became worse, with covariate-based double robust estimators especially susceptible. Applied analyses showed similar estimates at most time points, with the important exception of the inverse propensity estimator which deviated markedly as positivity violations increased. Given its efficiency, ability to respect the parameter space, and observed performance, we recommend the pooled and weighted targeted minimum loss-based estimator.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2017-0054","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2017-0054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 23
Abstract
A number of sophisticated estimators of longitudinal effects have been proposed for estimating the intervention-specific mean outcome. However, there is a relative paucity of research comparing these methods directly to one another. In this study, we compare various approaches to estimating a causal effect in a longitudinal treatment setting using both simulated data and data measured from a human immunodeficiency virus cohort. Six distinct estimators are considered: (i) an iterated conditional expectation representation, (ii) an inverse propensity weighted method, (iii) an augmented inverse propensity weighted method, (iv) a double robust iterated conditional expectation estimator, (v) a modified version of the double robust iterated conditional expectation estimator, and (vi) a targeted minimum loss-based estimator. The details of each estimator and its implementation are presented along with nuisance parameter estimation details, which include potentially pooling the observed data across all subjects regardless of treatment history and using data adaptive machine learning algorithms. Simulations are constructed over six time points, with each time point steadily increasing in positivity violations. Estimation is carried out for both the simulations and applied example using each of the six estimators under both stratified and pooled approaches of nuisance parameter estimation. Simulation results show that double robust estimators remained without meaningful bias as long as at least one of the two nuisance parameters were estimated with a correctly specified model. Under full misspecification, the bias of the double robust estimators remained better than that of the inverse propensity estimator under misspecification, but worse than the iterated conditional expectation estimator. Weighted estimators tended to show better performance than the covariate estimators. As positivity violations increased, the mean squared error and bias of all estimators considered became worse, with covariate-based double robust estimators especially susceptible. Applied analyses showed similar estimates at most time points, with the important exception of the inverse propensity estimator which deviated markedly as positivity violations increased. Given its efficiency, ability to respect the parameter space, and observed performance, we recommend the pooled and weighted targeted minimum loss-based estimator.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.