Youngsoon Kim, Jie Hao, Yadu Gautam, Tesfaye B Mersha, Mingon Kang
{"title":"DiffGRN: differential gene regulatory network analysis.","authors":"Youngsoon Kim, Jie Hao, Yadu Gautam, Tesfaye B Mersha, Mingon Kang","doi":"10.1504/IJDMB.2018.094891","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of differential gene regulators with significant changes under disparate conditions is essential to understand complex biological mechanism in a disease. Differential Network Analysis (DiNA) examines different biological processes based on gene regulatory networks that represent regulatory interactions between genes with a graph model. While most studies in DiNA have considered correlation-based inference to construct gene regulatory networks from gene expression data due to its intuitive representation and simple implementation, the approach lacks in the representation of causal effects and multivariate effects between genes. In this paper, we propose an approach named Differential Gene Regulatory Network (DiffGRN) that infers differential gene regulation between two groups. We infer gene regulatory networks of two groups using Random LASSO, and then we identify differential gene regulations by the proposed significance test. The advantages of DiffGRN are to capture multivariate effects of genes that regulate a gene simultaneously, to identify causality of gene regulations, and to discover differential gene regulators between regression-based gene regulatory networks. We assessed DiffGRN by simulation experiments and showed its outstanding performance than the current state-of-the-art correlation-based method, DINGO. DiffGRN is applied to gene expression data in asthma. The DiNA with asthma data showed a number of gene regulations, such as ADAM12 and RELB, reported in biological literature.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"20 4","pages":"362-379"},"PeriodicalIF":0.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2018.094891","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2018.094891","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identification of differential gene regulators with significant changes under disparate conditions is essential to understand complex biological mechanism in a disease. Differential Network Analysis (DiNA) examines different biological processes based on gene regulatory networks that represent regulatory interactions between genes with a graph model. While most studies in DiNA have considered correlation-based inference to construct gene regulatory networks from gene expression data due to its intuitive representation and simple implementation, the approach lacks in the representation of causal effects and multivariate effects between genes. In this paper, we propose an approach named Differential Gene Regulatory Network (DiffGRN) that infers differential gene regulation between two groups. We infer gene regulatory networks of two groups using Random LASSO, and then we identify differential gene regulations by the proposed significance test. The advantages of DiffGRN are to capture multivariate effects of genes that regulate a gene simultaneously, to identify causality of gene regulations, and to discover differential gene regulators between regression-based gene regulatory networks. We assessed DiffGRN by simulation experiments and showed its outstanding performance than the current state-of-the-art correlation-based method, DINGO. DiffGRN is applied to gene expression data in asthma. The DiNA with asthma data showed a number of gene regulations, such as ADAM12 and RELB, reported in biological literature.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.