{"title":"p53: Multiple Facets of a Rubik's Cube.","authors":"Yun Zhang, Guillermina Lozano","doi":"10.1146/annurev-cancerbio-050216-121926","DOIUrl":null,"url":null,"abstract":"<p><p>The p53 tumor suppressor has been studied for decades, and still there are many questions left unanswered. In this review, we first describe the current understanding of the wild-type p53 functions that determine cell survival or death, and regulation of the protein, with a particular focus on the negative regulators, the murine double minute family of proteins. We also summarize tissue-, stress-, and age-specific p53 activities and the potential underlying mechanisms. Among all <i>p53</i> gene alterations identified in human cancers, <i>p53</i> missense mutations predominate, suggesting an inherent biological advantage. Numerous gain-of-function activities of mutant p53 in different model systems and contexts have been identified. The emerging theme is that mutant p53, which retains a potent transcriptional activation domain, also retains the ability to modify gene transcription, albeit indirectly. Lastly, because mutant p53 stability is necessary for its gain of function, we summarize the mechanisms through which mutant p53 is specifically stabilized. A deeper understanding of the multiple pathways that impinge upon wild-type and mutant p53 activities and how these, in turn, regulate cell behavior will help identify vulnerabilities and therapeutic opportunities.</p>","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":"1 ","pages":"185-201"},"PeriodicalIF":4.7000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374046/pdf/nihms-1010263.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology-Series","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-cancerbio-050216-121926","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The p53 tumor suppressor has been studied for decades, and still there are many questions left unanswered. In this review, we first describe the current understanding of the wild-type p53 functions that determine cell survival or death, and regulation of the protein, with a particular focus on the negative regulators, the murine double minute family of proteins. We also summarize tissue-, stress-, and age-specific p53 activities and the potential underlying mechanisms. Among all p53 gene alterations identified in human cancers, p53 missense mutations predominate, suggesting an inherent biological advantage. Numerous gain-of-function activities of mutant p53 in different model systems and contexts have been identified. The emerging theme is that mutant p53, which retains a potent transcriptional activation domain, also retains the ability to modify gene transcription, albeit indirectly. Lastly, because mutant p53 stability is necessary for its gain of function, we summarize the mechanisms through which mutant p53 is specifically stabilized. A deeper understanding of the multiple pathways that impinge upon wild-type and mutant p53 activities and how these, in turn, regulate cell behavior will help identify vulnerabilities and therapeutic opportunities.
期刊介绍:
The Annual Review of Cancer Biology offers comprehensive reviews on various topics within cancer research, covering pivotal and emerging areas in the field. As our understanding of cancer's fundamental mechanisms deepens and more findings transition into targeted clinical treatments, the journal is structured around three main themes: Cancer Cell Biology, Tumorigenesis and Cancer Progression, and Translational Cancer Science. The current volume of this journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, ensuring all articles are published under a CC BY license.