Multiscale Cancer Modeling and In Silico Oncology: Emerging Computational Frontiers in Basic and Translational Cancer Research.

Georgios S Stamatakos, Norbert Graf, Ravi Radhakrishnan
{"title":"Multiscale Cancer Modeling and In Silico Oncology: Emerging Computational Frontiers in Basic and Translational Cancer Research.","authors":"Georgios S Stamatakos, Norbert Graf, Ravi Radhakrishnan","doi":"10.4172/2155-9538.1000e114","DOIUrl":null,"url":null,"abstract":"Cancer cells contain numerous mutations in the genome that are present in most or all malignant cells of a tumor. While not all mutations are significant for cancer progression, a subset of them, often termed driver mutations, have presumably been selected because they confer a distinctive fitness advantage for malignant cells in a heterogeneous tumor microenvironment [1,2]. Correlative studies on clinical samples profiling such mutations in various cancer types suggest that such drivers confer fitness advantage by providing a gain of function in several categories of cancer cell signaling including cell adhesion and motility, signaling, transcriptional regulation, cellular metabolism, and intracellular trafficking [3,4]. One of the grand challenges of the understanding of cancer progression is to find mechanistic links between such alterations and the hall marks of cancers such as increased proliferation and survival, aggressive invasion and metastasis, evasion of cell death, and increased metabolism [5,6]. This challenge is also of quintessential clinical importance because patient outcome to therapy (both in terms of initial response to therapy and subsequent development of resistance to therapy) is now shown to depend on the genetic alterations (primary or acquired) in the individual patients [7,8]. Traditional methods in cell biology and cancer biology such as phospho-proteomics, immuno-precipitation, polymerase chain reaction, in-situ hybridization and molecular imaging, and direct sequencing, along with network-based theories and bioinformatics are reasonably poised to probe some of these altered traits, such as those connected with signaling, transcriptional regulation, and","PeriodicalId":73616,"journal":{"name":"Journal of bioengineering & biomedical science","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368085/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioengineering & biomedical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9538.1000e114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/5/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Cancer cells contain numerous mutations in the genome that are present in most or all malignant cells of a tumor. While not all mutations are significant for cancer progression, a subset of them, often termed driver mutations, have presumably been selected because they confer a distinctive fitness advantage for malignant cells in a heterogeneous tumor microenvironment [1,2]. Correlative studies on clinical samples profiling such mutations in various cancer types suggest that such drivers confer fitness advantage by providing a gain of function in several categories of cancer cell signaling including cell adhesion and motility, signaling, transcriptional regulation, cellular metabolism, and intracellular trafficking [3,4]. One of the grand challenges of the understanding of cancer progression is to find mechanistic links between such alterations and the hall marks of cancers such as increased proliferation and survival, aggressive invasion and metastasis, evasion of cell death, and increased metabolism [5,6]. This challenge is also of quintessential clinical importance because patient outcome to therapy (both in terms of initial response to therapy and subsequent development of resistance to therapy) is now shown to depend on the genetic alterations (primary or acquired) in the individual patients [7,8]. Traditional methods in cell biology and cancer biology such as phospho-proteomics, immuno-precipitation, polymerase chain reaction, in-situ hybridization and molecular imaging, and direct sequencing, along with network-based theories and bioinformatics are reasonably poised to probe some of these altered traits, such as those connected with signaling, transcriptional regulation, and
多尺度癌症建模和硅肿瘤:基础和转化癌症研究的新兴计算前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信