The Performance of Fixed-Horizon, Look-Ahead Procedures Compared to Backward Induction in Bayesian Adaptive-Randomization Decision-Theoretic Clinical Trial Design.
IF 1.2 4区 数学Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
{"title":"The Performance of Fixed-Horizon, Look-Ahead Procedures Compared to Backward Induction in Bayesian Adaptive-Randomization Decision-Theoretic Clinical Trial Design.","authors":"Ari M Lipsky, Roger J Lewis","doi":"10.1515/ijb-2018-0014","DOIUrl":null,"url":null,"abstract":"<p><p>Designing optimal, Bayesian decision-theoretic trials has traditionally required the use of computationally-intensive backward induction. While methods for addressing this barrier have been put forward, few are both computationally tractable and non-myopic, with applications of the Gittins index being one notable example. Here we explore the look-ahead approach with adaptive-randomization, with designs ranging from the fully myopic to the fully informed. We compare the operating characteristics of the look-ahead designed trials, in which decision rules are based on a fixed number of future blocks, with those of trials designed using traditional backward induction. The less-myopic designs performed well. As the designs become more myopic or the trials longer, there were disparities in regions of the decision space that are transition zones between continuation and stopping decisions. The more myopic trials generally suffered from early stopping as compared to the less myopic and backward induction trials. Myopic trials with adaptive randomization also saw as many as 28 % of their continuation decisions change to a different randomization ratio as compared to the backward induction designs. Finally, early stages of myopic-designed trials may have disproportionate effect on trial characteristics.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing optimal, Bayesian decision-theoretic trials has traditionally required the use of computationally-intensive backward induction. While methods for addressing this barrier have been put forward, few are both computationally tractable and non-myopic, with applications of the Gittins index being one notable example. Here we explore the look-ahead approach with adaptive-randomization, with designs ranging from the fully myopic to the fully informed. We compare the operating characteristics of the look-ahead designed trials, in which decision rules are based on a fixed number of future blocks, with those of trials designed using traditional backward induction. The less-myopic designs performed well. As the designs become more myopic or the trials longer, there were disparities in regions of the decision space that are transition zones between continuation and stopping decisions. The more myopic trials generally suffered from early stopping as compared to the less myopic and backward induction trials. Myopic trials with adaptive randomization also saw as many as 28 % of their continuation decisions change to a different randomization ratio as compared to the backward induction designs. Finally, early stages of myopic-designed trials may have disproportionate effect on trial characteristics.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.