Correction of Copy Number Variation Data Using Principal Component Analysis.

Jiayu Chen, Jingyu Liu, Vince D Calhoun
{"title":"Correction of Copy Number Variation Data Using Principal Component Analysis.","authors":"Jiayu Chen, Jingyu Liu, Vince D Calhoun","doi":"10.1109/BIBMW.2010.5703928","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.</p>","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"2010 ","pages":"827-828"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353609/pdf/nihms-1007295.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2010.5703928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.

利用主成分分析法校正拷贝数变异数据。
由于信噪比低,使用 SNP 阵列数据进行拷贝数变异 (CNV) 检测具有挑战性。在本研究中,我们提出了一种基于主成分分析(PCA)的校正方法,以消除潜在混杂因素引起的 CNV 数据方差。模拟结果表明,校正后 CNV 检测准确率大幅提高。我们还观察到,经过校正后,真实 SNP 阵列数据的数据质量也有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信