Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model.

IF 0.9 4区 数学 Q3 Mathematics
Xiaohong Li, Dongfeng Wu, Nigel G F Cooper, Shesh N Rai
{"title":"Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model.","authors":"Xiaohong Li,&nbsp;Dongfeng Wu,&nbsp;Nigel G F Cooper,&nbsp;Shesh N Rai","doi":"10.1515/sagmb-2018-0021","DOIUrl":null,"url":null,"abstract":"<p><p>High throughput RNA sequencing (RNA-seq) technology is increasingly used in disease-related biomarker studies. A negative binomial distribution has become the popular choice for modeling read counts of genes in RNA-seq data due to over-dispersed read counts. In this study, we propose two explicit sample size calculation methods for RNA-seq data using a negative binomial regression model. To derive these new sample size formulas, the common dispersion parameter and the size factor as an offset via a natural logarithm link function are incorporated. A two-sided Wald test statistic derived from the coefficient parameter is used for testing a single gene at a nominal significance level 0.05 and multiple genes at a false discovery rate 0.05. The variance for the Wald test is computed from the variance-covariance matrix with the parameters estimated from the maximum likelihood estimates under the unrestricted and constrained scenarios. The performance and a side-by-side comparison of our new formulas with three existing methods with a Wald test, a likelihood ratio test or an exact test are evaluated via simulation studies. Since other methods are much computationally extensive, we recommend our M1 method for quick and direct estimation of sample sizes in an experimental design. Finally, we illustrate sample sizes estimation using an existing breast cancer RNA-seq data.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0021","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

High throughput RNA sequencing (RNA-seq) technology is increasingly used in disease-related biomarker studies. A negative binomial distribution has become the popular choice for modeling read counts of genes in RNA-seq data due to over-dispersed read counts. In this study, we propose two explicit sample size calculation methods for RNA-seq data using a negative binomial regression model. To derive these new sample size formulas, the common dispersion parameter and the size factor as an offset via a natural logarithm link function are incorporated. A two-sided Wald test statistic derived from the coefficient parameter is used for testing a single gene at a nominal significance level 0.05 and multiple genes at a false discovery rate 0.05. The variance for the Wald test is computed from the variance-covariance matrix with the parameters estimated from the maximum likelihood estimates under the unrestricted and constrained scenarios. The performance and a side-by-side comparison of our new formulas with three existing methods with a Wald test, a likelihood ratio test or an exact test are evaluated via simulation studies. Since other methods are much computationally extensive, we recommend our M1 method for quick and direct estimation of sample sizes in an experimental design. Finally, we illustrate sample sizes estimation using an existing breast cancer RNA-seq data.

使用负二项回归模型计算RNA-seq数据差异表达分析的样本量。
高通量RNA测序(RNA-seq)技术越来越多地应用于疾病相关生物标志物的研究。负二项分布已成为RNA-seq数据中基因读取计数建模的流行选择,因为读取计数过于分散。在本研究中,我们使用负二项回归模型对RNA-seq数据提出了两种显式样本量计算方法。为了得到这些新的样本量公式,将常见的色散参数和作为偏移量的大小因子通过自然对数链接函数结合起来。从系数参数导出的双侧Wald检验统计量用于在名义显著性水平0.05下测试单个基因,在错误发现率0.05下测试多个基因。Wald检验的方差由方差-协方差矩阵计算,参数由无限制和约束情景下的最大似然估计估计。通过仿真研究评估了新公式的性能,并将其与现有的三种方法(Wald检验、似然比检验或精确检验)进行了并排比较。由于其他方法的计算量很大,我们推荐我们的M1方法在实验设计中快速直接估计样本量。最后,我们使用现有的乳腺癌RNA-seq数据说明样本量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信