Heather L. Buckley , Nusrat J. Molla , Katya Cherukumilli , Kathryn S. Boden , Ashok J. Gadgil
{"title":"Addressing technical barriers for reliable, safe removal of fluoride from drinking water using minimally processed bauxite ores","authors":"Heather L. Buckley , Nusrat J. Molla , Katya Cherukumilli , Kathryn S. Boden , Ashok J. Gadgil","doi":"10.1016/j.deveng.2018.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Throughout the developing world, over 200 million people drink groundwater containing fluoride concentrations surpassing the World Health Organization's maximum recommended contaminant level (WHO-MCL) of 1.5 mg F<sup>−</sup>/L, resulting in adverse health effects ranging from mottled tooth enamel to debilitating skeletal fluorosis.</p><p>Existing technologies to remove fluoride from water, such as reverse osmosis and filtration with activated alumina, are expensive and are not accessible for low-income communities. Our group and others have demonstrated that minimally-processed bauxite ores can remove fluoride to safe levels at a fraction of the cost of activated alumina. We report results from testing for some technical challenges that may arise in field deployment of this technology at large scale, particularly in a sufficiently robust manner for application in development contexts. Anticipating possible modes of failure and addressing these challenges in advance in the laboratory is particularly important for technologies for vulnerable communities where the opportunity to re-launch pilot projects is limited and small failures can keep solutions from the people that need them most.</p><p>This work addresses three potential technical barriers to reliable removal of fluoride from drinking water with bauxite ore from Visakhapatnam, Andhra Pradesh, India. We evaluate competition from co-occurring ions, adsorption reversibility, and potability of the product water with regards to leaching of undesirable ions during treatment with various adsorbent materials including raw and thermally activated bauxite, and synthetic gibbsite (a simple model system). Under the conditions tested, the presence of phosphate significantly impacts fluoride adsorption capacity on all adsorbents. Sulfate impacts fluoride adsorption on gibbsite, but not on either bauxite adsorbent. Nitrate and silicate (as silicic acid), tested only with gibbsite, do not affect fluoride adsorption capacity. Both thermally activated bauxite and gibbsite show non-reversible adsorption of fluoride at a pH of 6. Raw bauxite leached arsenic and manganese in a TCLP leaching test at levels indicating the need for ongoing monitoring of treated water, but not precluding safe deployment of bauxite as a fluoride remediation technology. Understanding these phenomena is crucial to ensure field deployment over large diverse geographical areas with aquifers varying in groundwater composition, and for ensuring that the appropriate engineering processes are designed for field implementation of this innovation.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"3 ","pages":"Pages 175-187"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.deveng.2018.06.002","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235272851730091X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 7
Abstract
Throughout the developing world, over 200 million people drink groundwater containing fluoride concentrations surpassing the World Health Organization's maximum recommended contaminant level (WHO-MCL) of 1.5 mg F−/L, resulting in adverse health effects ranging from mottled tooth enamel to debilitating skeletal fluorosis.
Existing technologies to remove fluoride from water, such as reverse osmosis and filtration with activated alumina, are expensive and are not accessible for low-income communities. Our group and others have demonstrated that minimally-processed bauxite ores can remove fluoride to safe levels at a fraction of the cost of activated alumina. We report results from testing for some technical challenges that may arise in field deployment of this technology at large scale, particularly in a sufficiently robust manner for application in development contexts. Anticipating possible modes of failure and addressing these challenges in advance in the laboratory is particularly important for technologies for vulnerable communities where the opportunity to re-launch pilot projects is limited and small failures can keep solutions from the people that need them most.
This work addresses three potential technical barriers to reliable removal of fluoride from drinking water with bauxite ore from Visakhapatnam, Andhra Pradesh, India. We evaluate competition from co-occurring ions, adsorption reversibility, and potability of the product water with regards to leaching of undesirable ions during treatment with various adsorbent materials including raw and thermally activated bauxite, and synthetic gibbsite (a simple model system). Under the conditions tested, the presence of phosphate significantly impacts fluoride adsorption capacity on all adsorbents. Sulfate impacts fluoride adsorption on gibbsite, but not on either bauxite adsorbent. Nitrate and silicate (as silicic acid), tested only with gibbsite, do not affect fluoride adsorption capacity. Both thermally activated bauxite and gibbsite show non-reversible adsorption of fluoride at a pH of 6. Raw bauxite leached arsenic and manganese in a TCLP leaching test at levels indicating the need for ongoing monitoring of treated water, but not precluding safe deployment of bauxite as a fluoride remediation technology. Understanding these phenomena is crucial to ensure field deployment over large diverse geographical areas with aquifers varying in groundwater composition, and for ensuring that the appropriate engineering processes are designed for field implementation of this innovation.
Development EngineeringEconomics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍:
Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."