Xavier Trosseille, Philippe Petit, Jérôme Uriot, Pascal Potier, Pascal Baudrit, Olivier Richard, Sabine Compigne, Mitsutoshi Masuda, Richard Douard
{"title":"Reference PMHS Sled Tests to Assess Submarining of the Small Female.","authors":"Xavier Trosseille, Philippe Petit, Jérôme Uriot, Pascal Potier, Pascal Baudrit, Olivier Richard, Sabine Compigne, Mitsutoshi Masuda, Richard Douard","doi":"10.4271/2018-22-0003","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining. In the first configuration, no submarining was observed in 3 cases out of 4 and only one iliac wing fracture occurred in one subject. In the second and third configurations, all subjects but one sustained submarining. In addition, two subjects out of three in the third configuration sustained substantial iliac wing fractures. Nevertheless, all configurations can be represented by at least one or several cases without any pelvis fracture. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new experimental references to assess the biofidelity of small female human surrogates in different configurations where submarining did or did not occur.</p>","PeriodicalId":35289,"journal":{"name":"Stapp car crash journal","volume":"62 ","pages":"93-118"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stapp car crash journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2018-22-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9
Abstract
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining. In the first configuration, no submarining was observed in 3 cases out of 4 and only one iliac wing fracture occurred in one subject. In the second and third configurations, all subjects but one sustained submarining. In addition, two subjects out of three in the third configuration sustained substantial iliac wing fractures. Nevertheless, all configurations can be represented by at least one or several cases without any pelvis fracture. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new experimental references to assess the biofidelity of small female human surrogates in different configurations where submarining did or did not occur.