{"title":"Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters.","authors":"Lixia Zhang, Huimin Jia, Chuang Liu, Minying Liu, Qingbo Meng, Weiwei He","doi":"10.1080/10590501.2018.1555317","DOIUrl":null,"url":null,"abstract":"<p><p>The modification of semiconductor nanostructures with metallic nanocomponents can promote the separation of electron/hole from photoexited semiconductors by forming heterojunctions, thus exhibit enhanced photocatalytic activities and potential applications. In this study, Pt-based NPs, including Pt, PtCu, and PtCuCo are employed as model co-catalysts to comparatively study their capability to enhance the photocatalytic activity of TiO<sub>2</sub> nanosheets. It was found that each of Pt, PtCu, and PtCuCo can greatly enhance the photocatalytic activity of TiO<sub>2</sub> toward degradation of organic dyes. Using electron spin resonance spectroscopy, we demonstrated that deposition of Pt-based NPs resulted in more production of reactive oxygen species including hydroxyl radicals, superoxide, and singlet oxygen. The enhancing effects of Pt-based NPs on generation of ROS and photocatalytic activity showed same trend: PtCuCo > PtCu > Pt. The mechanism underlying the enhancement differences in Pt-based NPs may be mainly related to electronic structure change of Pt in alloying with Cu and Co. These results are valuable for designing hybrid nanomaterials with high photocatalytic efficiency for applications in water purification and antibacterial products.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"37 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2018.1555317","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2018.1555317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8
Abstract
The modification of semiconductor nanostructures with metallic nanocomponents can promote the separation of electron/hole from photoexited semiconductors by forming heterojunctions, thus exhibit enhanced photocatalytic activities and potential applications. In this study, Pt-based NPs, including Pt, PtCu, and PtCuCo are employed as model co-catalysts to comparatively study their capability to enhance the photocatalytic activity of TiO2 nanosheets. It was found that each of Pt, PtCu, and PtCuCo can greatly enhance the photocatalytic activity of TiO2 toward degradation of organic dyes. Using electron spin resonance spectroscopy, we demonstrated that deposition of Pt-based NPs resulted in more production of reactive oxygen species including hydroxyl radicals, superoxide, and singlet oxygen. The enhancing effects of Pt-based NPs on generation of ROS and photocatalytic activity showed same trend: PtCuCo > PtCu > Pt. The mechanism underlying the enhancement differences in Pt-based NPs may be mainly related to electronic structure change of Pt in alloying with Cu and Co. These results are valuable for designing hybrid nanomaterials with high photocatalytic efficiency for applications in water purification and antibacterial products.
期刊介绍:
Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.