MicroRNA-messenger RNA interactions involving JAK-STAT signaling genes in colorectal cancer.

Q2 Biochemistry, Genetics and Molecular Biology
Lila E Mullany, Jennifer S Herrick, Lori C Sakoda, Wade Samowitz, John R Stevens, Roger K Wolff, Martha L Slattery
{"title":"MicroRNA-messenger RNA interactions involving JAK-STAT signaling genes in colorectal cancer.","authors":"Lila E Mullany,&nbsp;Jennifer S Herrick,&nbsp;Lori C Sakoda,&nbsp;Wade Samowitz,&nbsp;John R Stevens,&nbsp;Roger K Wolff,&nbsp;Martha L Slattery","doi":"10.18632/genesandcancer.177","DOIUrl":null,"url":null,"abstract":"<p><p>JAK-STAT signaling influences many downstream processes that, unchecked, contribute to carcinogenesis and metastasis. MicroRNAs (miRNAs) are hypothesized as a mechanism to prevent uncontrolled growth from continuous JAK-STAT activation. We investigated differential expression between paired carcinoma and normal colorectal mucosa of messenger RNAs (mRNAs) and miRNAs using RNA-Seq and Agilent Human miRNA Microarray V19.0 data, respectively, using a negative binomial mixed effects model to test 122 JAK-STAT-signaling genes in 217 colorectal cancer (CRC) cases. Overall, 42 mRNAs were differentially expressed with a fold change of >1.50 or <0.67, remaining significant with a false discovery rate of < 0.05; four were dysregulated in microsatellite stable (MSS) tumors, eight were for microsatellite unstable (MSI)-specific tumors. Of these 54 mRNAs, 17 were associated with differential expression of 46 miRNAs, comprising 116 interactions: 16 were significant overall, one for MSS tumors only. Twenty of the 29 interactions with negative beta coefficients involved miRNA seed sequence matches with mRNAs, supporting miRNA-mediated mRNA repression; 17 of these mRNAs encode for receptor molecules. Receptor molecule degradation is an established JAK-STAT signaling control mechanism; our results suggest that miRNAs facilitate this process. Interactions involving positive beta coefficients may illustrate downstream effects of disrupted STAT activity, and subsequent miRNA upregulation.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"9 5-6","pages":"232-246"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305104/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/genesandcancer.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

Abstract

JAK-STAT signaling influences many downstream processes that, unchecked, contribute to carcinogenesis and metastasis. MicroRNAs (miRNAs) are hypothesized as a mechanism to prevent uncontrolled growth from continuous JAK-STAT activation. We investigated differential expression between paired carcinoma and normal colorectal mucosa of messenger RNAs (mRNAs) and miRNAs using RNA-Seq and Agilent Human miRNA Microarray V19.0 data, respectively, using a negative binomial mixed effects model to test 122 JAK-STAT-signaling genes in 217 colorectal cancer (CRC) cases. Overall, 42 mRNAs were differentially expressed with a fold change of >1.50 or <0.67, remaining significant with a false discovery rate of < 0.05; four were dysregulated in microsatellite stable (MSS) tumors, eight were for microsatellite unstable (MSI)-specific tumors. Of these 54 mRNAs, 17 were associated with differential expression of 46 miRNAs, comprising 116 interactions: 16 were significant overall, one for MSS tumors only. Twenty of the 29 interactions with negative beta coefficients involved miRNA seed sequence matches with mRNAs, supporting miRNA-mediated mRNA repression; 17 of these mRNAs encode for receptor molecules. Receptor molecule degradation is an established JAK-STAT signaling control mechanism; our results suggest that miRNAs facilitate this process. Interactions involving positive beta coefficients may illustrate downstream effects of disrupted STAT activity, and subsequent miRNA upregulation.

Abstract Image

Abstract Image

Abstract Image

结直肠癌中涉及JAK-STAT信号基因的microrna -信使RNA相互作用。
JAK-STAT信号影响许多下游过程,如果不加以控制,就会导致癌变和转移。MicroRNAs (miRNAs)被认为是一种防止JAK-STAT持续激活导致不受控制的生长的机制。采用RNA-Seq和Agilent Human miRNA Microarray V19.0数据,采用负二项混合效应模型对217例结直肠癌(CRC)患者的122个jak - stat信号基因进行检测,研究配对癌与正常结直肠粘膜mrna和miRNAs的差异表达。总的来说,42个mrna差异表达,其倍数变化>1.50或
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes and Cancer
Genes and Cancer Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.90
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信