{"title":"Epigenetic silencing of <i>Lgr5</i> induces senescence of intestinal epithelial organoids during the process of aging.","authors":"Ryoei Uchida, Yoshimasa Saito, Kazuki Nogami, Yohei Kajiyama, Yukana Suzuki, Yasuhiro Kawase, Toshiaki Nakaoka, Toshihide Muramatsu, Masaki Kimura, Hidetsugu Saito","doi":"10.1038/s41514-018-0031-5","DOIUrl":null,"url":null,"abstract":"<p><p>To understand the molecular features underlying stem cell aging, we established intestinal epithelial organoids derived from both young and aged mice and investigated alterations in their senescence and epigenetic status. Senescence-related changes including accumulation of senescence-associated β-galactosidase and up-regulation of <i>Cdkn1a</i> (<i>p21)</i> by DNA demethylation were observed in intestinal epithelial organoids derived from aged mice. We also demonstrated that the important stem cell marker <i>Lgr5</i> was epigenetically silenced by trimethylation of histone H3 lysine 27, inducing suppression of Wnt signaling and a decrease of cell proliferation in organoids from aged mice. We further treated intestinal epithelial organoids from aged mice with nicotinamide mononucleotide (NMN), a key NAD<sup>+</sup> intermediate. As a result, the organoids showed a higher NAD<sup>+</sup> level, increased cell proliferative ability, activation of <i>Lgr5</i> and suppression of senescence-associated genes, indicating that treatment with NMN could ameliorate senescence-related changes in intestinal epithelia. These findings suggest that organoids derived from aged animals could be a powerful research tool for investigating the molecular mechanisms underlying stem cell aging and for development of some form of anti-aging intervention, thus contributing to prolongation of healthy life expectancy.</p>","PeriodicalId":19334,"journal":{"name":"NPJ Aging and Mechanisms of Disease","volume":"5 ","pages":"1"},"PeriodicalIF":5.4000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41514-018-0031-5","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Aging and Mechanisms of Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-018-0031-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 22
Abstract
To understand the molecular features underlying stem cell aging, we established intestinal epithelial organoids derived from both young and aged mice and investigated alterations in their senescence and epigenetic status. Senescence-related changes including accumulation of senescence-associated β-galactosidase and up-regulation of Cdkn1a (p21) by DNA demethylation were observed in intestinal epithelial organoids derived from aged mice. We also demonstrated that the important stem cell marker Lgr5 was epigenetically silenced by trimethylation of histone H3 lysine 27, inducing suppression of Wnt signaling and a decrease of cell proliferation in organoids from aged mice. We further treated intestinal epithelial organoids from aged mice with nicotinamide mononucleotide (NMN), a key NAD+ intermediate. As a result, the organoids showed a higher NAD+ level, increased cell proliferative ability, activation of Lgr5 and suppression of senescence-associated genes, indicating that treatment with NMN could ameliorate senescence-related changes in intestinal epithelia. These findings suggest that organoids derived from aged animals could be a powerful research tool for investigating the molecular mechanisms underlying stem cell aging and for development of some form of anti-aging intervention, thus contributing to prolongation of healthy life expectancy.
期刊介绍:
npj Aging and Mechanisms of Disease is an online open access journal that provides a forum for the world’s most important research in the fields of aging and aging-related disease. The journal publishes papers from all relevant disciplines, encouraging those that shed light on the mechanisms behind aging and the associated diseases. The journal’s scope includes, but is not restricted to, the following areas (not listed in order of preference): • cellular and molecular mechanisms of aging and aging-related diseases • interventions to affect the process of aging and longevity • homeostatic regulation and aging • age-associated complications • translational research into prevention and treatment of aging-related diseases • mechanistic bases for epidemiological aspects of aging-related disease.