Effect of Data Acquisition and Analysis Method on Fiber Orientation Estimation in Diffusion MRI.

Bryce Wilkins, Namgyun Lee, Vidya Rajagopalan, Meng Law, Natasha Leporé
{"title":"Effect of Data Acquisition and Analysis Method on Fiber Orientation Estimation in Diffusion MRI.","authors":"Bryce Wilkins,&nbsp;Namgyun Lee,&nbsp;Vidya Rajagopalan,&nbsp;Meng Law,&nbsp;Natasha Leporé","doi":"10.1007/978-3-319-02475-2_2","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we investigate the effect of single-shell q-space diffusion sampling strategies and applicable multiple-fiber analysis methods on fiber orientation estimation in Diffusion MRI. Specifically, we develop a simulation based on an in-vivo data set and compare a two-compartment \"ball-and-stick\" model, a constrained spherical deconvolution approach, a generalized Fourier transform approach, and three related methods based on transforms of Fourier data on the sphere. We evaluate each method for <i>N</i> = 20, 30, 40, 60, 90 and 120 angular diffusion-weighted samples, at SNR = 18 and diffusion-weighting <i>b</i> = 1000s/mm<sup>2</sup>, common to clinical studies. Our results quantitatively show the methods' are most distinguished from each other by their fiber detection ability. Overall, the \"ball-and-stick\" model and spherical deconvolution approach were found to perform best, yielding the least orientation error, and greatest detection rate of fibers.</p>","PeriodicalId":92492,"journal":{"name":"Computational Diffusion MRI and Brain Connectivity : MICCAI Workshops, Nagoya, Japan, September 22nd, 2013. MICCAI Workshop on Computation Diffusion MRI (5th : 2013 : Nagoya-shi, Japan)","volume":"2013 ","pages":"13-24"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-02475-2_2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Diffusion MRI and Brain Connectivity : MICCAI Workshops, Nagoya, Japan, September 22nd, 2013. MICCAI Workshop on Computation Diffusion MRI (5th : 2013 : Nagoya-shi, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-02475-2_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/11/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we investigate the effect of single-shell q-space diffusion sampling strategies and applicable multiple-fiber analysis methods on fiber orientation estimation in Diffusion MRI. Specifically, we develop a simulation based on an in-vivo data set and compare a two-compartment "ball-and-stick" model, a constrained spherical deconvolution approach, a generalized Fourier transform approach, and three related methods based on transforms of Fourier data on the sphere. We evaluate each method for N = 20, 30, 40, 60, 90 and 120 angular diffusion-weighted samples, at SNR = 18 and diffusion-weighting b = 1000s/mm2, common to clinical studies. Our results quantitatively show the methods' are most distinguished from each other by their fiber detection ability. Overall, the "ball-and-stick" model and spherical deconvolution approach were found to perform best, yielding the least orientation error, and greatest detection rate of fibers.

Abstract Image

Abstract Image

Abstract Image

数据采集与分析方法对弥散MRI中纤维取向估计的影响。
本文研究了单壳q空间扩散采样策略和适用的多纤维分析方法对扩散MRI中纤维取向估计的影响。具体来说,我们开发了一个基于体内数据集的模拟,并比较了两室“球和棒”模型、约束球面反卷积方法、广义傅里叶变换方法和三种基于傅里叶数据在球体上变换的相关方法。我们评估了N = 20、30、40、60、90和120个角扩散加权样本,信噪比为18,扩散加权b = 1000s/mm2,这是临床研究中常见的。我们的结果定量地表明,这些方法之间最大的区别在于它们的纤维检测能力。总体而言,“球棒”模型和球形反褶积方法表现最好,产生最小的方向误差,纤维的检测率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信