Jingyun Li , Yingmin Zhao , Luqingqing He , Yun Huang , Xiaojing Yang , Lingling Yu , Qingshun Zhao , Xiaohua Dong
{"title":"Znfl1s are essential for patterning the anterior-posterior axis of zebrafish posterior hindbrain by acting as direct target genes of retinoic acid","authors":"Jingyun Li , Yingmin Zhao , Luqingqing He , Yun Huang , Xiaojing Yang , Lingling Yu , Qingshun Zhao , Xiaohua Dong","doi":"10.1016/j.mod.2018.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>RA (retinoic acid) signaling is essential for the patterning the hindbrain of vertebrates. Although hundreds of potential RA targets genes are identified, the ones other than <em>hox</em> genes playing roles in patterning anterior-posterior axis of hindbrain by mediating RA signaling remains largely unknown. Previously, we reported that <em>znfl1s</em> play essential roles in the formation of posterior neuroectoderm in zebrafish embryos. Here, we revealed that <em>znfl1s</em> play a critical role in patterning the posterior axis of hindbrain by maintaining the homeostasis of RA signaling in zebrafish embryos. Knocking down <em>znfl1s</em> shortened the length of the posterior hindbrain in a similar way of reducing RA signaling in zebrafish embryos and the defective posterior hindbrain was effectively rescued by elevating RA signaling. By performing mutagenesis assays and chromatin immunoprecipitation assays on the promoter of <em>znfl1s</em>, we demonstrated that <em>znfl1s</em> are direct target genes of RA to mediate RA signaling through a functional DR1 RA response element. Taken together, our results showed that Znfl1s are essential for patterning the anterior-posterior axis development of posterior hindbrain by acting as direct target genes of RA signaling.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"155 ","pages":"Pages 27-33"},"PeriodicalIF":2.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.11.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092547731830128X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
RA (retinoic acid) signaling is essential for the patterning the hindbrain of vertebrates. Although hundreds of potential RA targets genes are identified, the ones other than hox genes playing roles in patterning anterior-posterior axis of hindbrain by mediating RA signaling remains largely unknown. Previously, we reported that znfl1s play essential roles in the formation of posterior neuroectoderm in zebrafish embryos. Here, we revealed that znfl1s play a critical role in patterning the posterior axis of hindbrain by maintaining the homeostasis of RA signaling in zebrafish embryos. Knocking down znfl1s shortened the length of the posterior hindbrain in a similar way of reducing RA signaling in zebrafish embryos and the defective posterior hindbrain was effectively rescued by elevating RA signaling. By performing mutagenesis assays and chromatin immunoprecipitation assays on the promoter of znfl1s, we demonstrated that znfl1s are direct target genes of RA to mediate RA signaling through a functional DR1 RA response element. Taken together, our results showed that Znfl1s are essential for patterning the anterior-posterior axis development of posterior hindbrain by acting as direct target genes of RA signaling.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.