Eirikur Briem , Zuzana Budkova , Anna Karen Sigurdardottir , Bylgja Hilmarsdottir , Jennifer Kricker , Winston Timp , Magnus Karl Magnusson , Gunnhildur Asta Traustadottir , Thorarinn Gudjonsson
{"title":"MiR-203a is differentially expressed during branching morphogenesis and EMT in breast progenitor cells and is a repressor of peroxidasin","authors":"Eirikur Briem , Zuzana Budkova , Anna Karen Sigurdardottir , Bylgja Hilmarsdottir , Jennifer Kricker , Winston Timp , Magnus Karl Magnusson , Gunnhildur Asta Traustadottir , Thorarinn Gudjonsson","doi":"10.1016/j.mod.2018.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>MicroRNAs regulate developmental events such as branching morphogenesis, epithelial to mesenchymal transition (EMT) and its reverse process mesenchymal to epithelial transition (MET). In this study, we performed small RNA sequencing of a breast epithelial progenitor cell line (D492), and its mesenchymal derivative (D492M) cultured in three-dimensional microenvironment. Among the most downregulated miRNAs in D492M was miR-203a, a miRNA that plays an important role in epithelial differentiation. Increased expression of miR-203a was seen in D492, concomitant with increased complexity of branching. When miR-203a was overexpressed in D492M, a partial reversion towards epithelial phenotype was seen. Gene expression analysis of D492M and D492M<sup>miR-203a</sup> revealed peroxidasin, a collagen IV cross-linker, as the most significantly downregulated gene in D492M<sup>miR-203a</sup>. Collectively, we demonstrate that miR-203a expression temporally correlates with branching morphogenesis and is suppressed in D492M. Overexpression of miR-203a in D492M induces a partial MET and reduces the expression of peroxidasin. Furthermore, we demonstrate that miR-203a is a novel repressor of peroxidasin. MiR-203-peroxidasin axis may be an important regulator in branching morphogenesis, EMT/MET and basement membrane remodeling.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"155 ","pages":"Pages 34-47"},"PeriodicalIF":2.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.11.002","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 11
Abstract
MicroRNAs regulate developmental events such as branching morphogenesis, epithelial to mesenchymal transition (EMT) and its reverse process mesenchymal to epithelial transition (MET). In this study, we performed small RNA sequencing of a breast epithelial progenitor cell line (D492), and its mesenchymal derivative (D492M) cultured in three-dimensional microenvironment. Among the most downregulated miRNAs in D492M was miR-203a, a miRNA that plays an important role in epithelial differentiation. Increased expression of miR-203a was seen in D492, concomitant with increased complexity of branching. When miR-203a was overexpressed in D492M, a partial reversion towards epithelial phenotype was seen. Gene expression analysis of D492M and D492MmiR-203a revealed peroxidasin, a collagen IV cross-linker, as the most significantly downregulated gene in D492MmiR-203a. Collectively, we demonstrate that miR-203a expression temporally correlates with branching morphogenesis and is suppressed in D492M. Overexpression of miR-203a in D492M induces a partial MET and reduces the expression of peroxidasin. Furthermore, we demonstrate that miR-203a is a novel repressor of peroxidasin. MiR-203-peroxidasin axis may be an important regulator in branching morphogenesis, EMT/MET and basement membrane remodeling.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.