{"title":"A novel method to accurately calculate statistical significance of local similarity analysis for high-throughput time series.","authors":"Fang Zhang, Ang Shan, Yihui Luan","doi":"10.1515/sagmb-2018-0019","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, a large number of time series microbial community data has been produced in molecular biological studies, especially in metagenomics. Among the statistical methods for time series, local similarity analysis is used in a wide range of environments to capture potential local and time-shifted associations that cannot be distinguished by traditional correlation analysis. Initially, the permutation test is popularly applied to obtain the statistical significance of local similarity analysis. More recently, a theoretical method has also been developed to achieve this aim. However, all these methods require the assumption that the time series are independent and identically distributed. In this paper, we propose a new approach based on moving block bootstrap to approximate the statistical significance of local similarity scores for dependent time series. Simulations show that our method can control the type I error rate reasonably, while theoretical approximation and the permutation test perform less well. Finally, our method is applied to human and marine microbial community datasets, indicating that it can identify potential relationship among operational taxonomic units (OTUs) and significantly decrease the rate of false positives.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"17 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0019","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, a large number of time series microbial community data has been produced in molecular biological studies, especially in metagenomics. Among the statistical methods for time series, local similarity analysis is used in a wide range of environments to capture potential local and time-shifted associations that cannot be distinguished by traditional correlation analysis. Initially, the permutation test is popularly applied to obtain the statistical significance of local similarity analysis. More recently, a theoretical method has also been developed to achieve this aim. However, all these methods require the assumption that the time series are independent and identically distributed. In this paper, we propose a new approach based on moving block bootstrap to approximate the statistical significance of local similarity scores for dependent time series. Simulations show that our method can control the type I error rate reasonably, while theoretical approximation and the permutation test perform less well. Finally, our method is applied to human and marine microbial community datasets, indicating that it can identify potential relationship among operational taxonomic units (OTUs) and significantly decrease the rate of false positives.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.