Ondřej Baszczyňski, Martin Maxmilian Kaiser, Michal Česnek, Petra Břehová, Petr Jansa, Eliška Procházková, Martin Dračínský, Robert Snoeck, Graciela Andrei, Zlatko Janeba
{"title":"Xanthine-based acyclic nucleoside phosphonates with potent antiviral activity against varicella-zoster virus and human cytomegalovirus.","authors":"Ondřej Baszczyňski, Martin Maxmilian Kaiser, Michal Česnek, Petra Břehová, Petr Jansa, Eliška Procházková, Martin Dračínský, Robert Snoeck, Graciela Andrei, Zlatko Janeba","doi":"10.1177/2040206618813050","DOIUrl":null,"url":null,"abstract":"<p><p>While noncanonic xanthine nucleotides XMP/dXMP play an important role in balancing and maintaining intracellular purine nucleotide pool as well as in potential mutagenesis, surprisingly, acyclic nucleoside phosphonates bearing a xanthine nucleobase have not been studied so far for their antiviral properties. Herein, we report the synthesis of a series of xanthine-based acyclic nucleoside phosphonates and evaluation of their activity against a wide range of DNA and RNA viruses. Two acyclic nucleoside phosphonates within the series, namely 9-[2-(phosphonomethoxy)ethyl]xanthine (PMEX) and 9-[3-hydroxy-2-(phosphonomethoxy)propyl]xanthine (HPMPX), were shown to possess activity against several human herpesviruses. The most potent compound was PMEX, a xanthine analogue of adefovir (PMEA). PMEX exhibited a single digit µM activity against VZV (EC<sub>50</sub> = 2.6 µM, TK<sup>+</sup> Oka strain) and HCMV (EC<sub>50</sub> = 8.5 µM, Davis strain), while its hexadecyloxypropyl monoester derivative was active against HSV-1 and HSV-2 (EC<sub>50</sub> values between 1.8 and 4.0 µM). In contrast to acyclovir, PMEX remained active against the TK<sup>-</sup> VZV 07-1 strain with EC<sub>50</sub> = 4.58 µM. PMEX was suggested to act as an inhibitor of viral DNA polymerase and represents the first reported xanthine-based acyclic nucleoside phosphonate with potent antiviral properties.</p>","PeriodicalId":7960,"journal":{"name":"Antiviral Chemistry and Chemotherapy","volume":"26 ","pages":"2040206618813050"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2040206618813050","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral Chemistry and Chemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2040206618813050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 4
Abstract
While noncanonic xanthine nucleotides XMP/dXMP play an important role in balancing and maintaining intracellular purine nucleotide pool as well as in potential mutagenesis, surprisingly, acyclic nucleoside phosphonates bearing a xanthine nucleobase have not been studied so far for their antiviral properties. Herein, we report the synthesis of a series of xanthine-based acyclic nucleoside phosphonates and evaluation of their activity against a wide range of DNA and RNA viruses. Two acyclic nucleoside phosphonates within the series, namely 9-[2-(phosphonomethoxy)ethyl]xanthine (PMEX) and 9-[3-hydroxy-2-(phosphonomethoxy)propyl]xanthine (HPMPX), were shown to possess activity against several human herpesviruses. The most potent compound was PMEX, a xanthine analogue of adefovir (PMEA). PMEX exhibited a single digit µM activity against VZV (EC50 = 2.6 µM, TK+ Oka strain) and HCMV (EC50 = 8.5 µM, Davis strain), while its hexadecyloxypropyl monoester derivative was active against HSV-1 and HSV-2 (EC50 values between 1.8 and 4.0 µM). In contrast to acyclovir, PMEX remained active against the TK- VZV 07-1 strain with EC50 = 4.58 µM. PMEX was suggested to act as an inhibitor of viral DNA polymerase and represents the first reported xanthine-based acyclic nucleoside phosphonate with potent antiviral properties.
期刊介绍:
Antiviral Chemistry & Chemotherapy publishes the results of original research concerned with the biochemistry, mode of action, chemistry, pharmacology and virology of antiviral compounds. Manuscripts dealing with molecular biology, animal models and vaccines are welcome. The journal also publishes reviews, pointers, short communications and correspondence.