Animal Models for Influenza A Virus Infection Incorporating the Involvement of Innate Host Defenses: Enhanced Translational Value of the Porcine Model.
Sofie M R Starbæk, Louise Brogaard, Harry D Dawson, Allen D Smith, Peter M H Heegaard, Lars E Larsen, Gregers Jungersen, Kerstin Skovgaard
{"title":"Animal Models for Influenza A Virus Infection Incorporating the Involvement of Innate Host Defenses: Enhanced Translational Value of the Porcine Model.","authors":"Sofie M R Starbæk, Louise Brogaard, Harry D Dawson, Allen D Smith, Peter M H Heegaard, Lars E Larsen, Gregers Jungersen, Kerstin Skovgaard","doi":"10.1093/ilar/ily009","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza is a viral respiratory disease having a major impact on public health. Influenza A virus (IAV) usually causes mild transitory disease in humans. However, in specific groups of individuals such as severely obese, the elderly, and individuals with underlying inflammatory conditions, IAV can cause severe illness or death. In this review, relevant small and large animal models for human IAV infection, including the pig, ferret, and mouse, are discussed. The focus is on the pig as a large animal model for human IAV infection as well as on the associated innate immune response. Pigs are natural hosts for the same IAV subtypes as humans, they develop clinical disease mirroring human symptoms, they have similar lung anatomy, and their respiratory physiology and immune responses to IAV infection are remarkably similar to what is observed in humans. The pig model shows high face and target validity for human IAV infection, making it suitable for modeling many aspects of influenza, including increased risk of severe disease and impaired vaccine response due to underlying pathologies such as low-grade inflammation. Comparative analysis of proteins involved in viral pattern recognition, interferon responses, and regulation of interferon-stimulated genes reveals a significantly higher degree of similarity between pig, ferret, and human compared with mice. It is concluded that the pig is a promising animal model displaying substantial human translational value with the ability to provide essential insights into IAV infection, pathogenesis, and immunity.</p>","PeriodicalId":56299,"journal":{"name":"Ilar Journal","volume":"59 3","pages":"323-337"},"PeriodicalIF":3.1000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ilar/ily009","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilar Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ilar/ily009","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 16
Abstract
Influenza is a viral respiratory disease having a major impact on public health. Influenza A virus (IAV) usually causes mild transitory disease in humans. However, in specific groups of individuals such as severely obese, the elderly, and individuals with underlying inflammatory conditions, IAV can cause severe illness or death. In this review, relevant small and large animal models for human IAV infection, including the pig, ferret, and mouse, are discussed. The focus is on the pig as a large animal model for human IAV infection as well as on the associated innate immune response. Pigs are natural hosts for the same IAV subtypes as humans, they develop clinical disease mirroring human symptoms, they have similar lung anatomy, and their respiratory physiology and immune responses to IAV infection are remarkably similar to what is observed in humans. The pig model shows high face and target validity for human IAV infection, making it suitable for modeling many aspects of influenza, including increased risk of severe disease and impaired vaccine response due to underlying pathologies such as low-grade inflammation. Comparative analysis of proteins involved in viral pattern recognition, interferon responses, and regulation of interferon-stimulated genes reveals a significantly higher degree of similarity between pig, ferret, and human compared with mice. It is concluded that the pig is a promising animal model displaying substantial human translational value with the ability to provide essential insights into IAV infection, pathogenesis, and immunity.
期刊介绍:
The ILAR Journal is the peer-reviewed, theme-oriented publication of the Institute for Laboratory Animal Research (ILAR), which provides timely information for all who study, use, care for, and oversee the use of animals in research. The journal publishes original articles that review research on animals either as direct subjects or as surrogates for humans. According to policy, any previously unpublished animal research reported in the ILAR Journal will have been conducted according to the scientific, technical, and humanely appropriate guidelines current at the time the research was conducted in accordance with the Guide for the Care and Use of Laboratory Animals or other guidance provided by taxonomically-oriented professional societies (e.g., American Society of Mammalogy) as referenced in the Guide.