Quantum chemical simulations revealed the toxicokinetic mechanisms of organic phosphorus flame retardants catalyzed by P450 enzymes.

Q2 Biochemistry, Genetics and Molecular Biology
Zhiqiang Fu, Jingwen Chen, Yong Wang, Huixiao Hong, Hongbin Xie
{"title":"Quantum chemical simulations revealed the toxicokinetic mechanisms of organic phosphorus flame retardants catalyzed by P450 enzymes.","authors":"Zhiqiang Fu,&nbsp;Jingwen Chen,&nbsp;Yong Wang,&nbsp;Huixiao Hong,&nbsp;Hongbin Xie","doi":"10.1080/10590501.2018.1537564","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic fate and toxicokinetics of organic phosphorus flame retardants catalyzed by cytochrome P450 enzymes (CYPs) are here investigated by in silico simulations, leveraging an active center model to mimic the CYPs, triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate as substrates. Our calculations elucidated key main pathways and predicted products, which were corroborated by current in vitro data. Results showed that alkyl OPFRs are eliminated faster than aryl and halogenated alkyl-substituted OPFRs. In addition, we discovered a proton shuttle pathway for aryl hydroxylation of TPHP and P = O bond-assisted H-transfer mechanisms (rather than nonenzymatic hydrolysis) that lead to O-dealkylation/dearylation of phosphotriesters.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"36 4","pages":"272-291"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2018.1537564","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2018.1537564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

The metabolic fate and toxicokinetics of organic phosphorus flame retardants catalyzed by cytochrome P450 enzymes (CYPs) are here investigated by in silico simulations, leveraging an active center model to mimic the CYPs, triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate as substrates. Our calculations elucidated key main pathways and predicted products, which were corroborated by current in vitro data. Results showed that alkyl OPFRs are eliminated faster than aryl and halogenated alkyl-substituted OPFRs. In addition, we discovered a proton shuttle pathway for aryl hydroxylation of TPHP and P = O bond-assisted H-transfer mechanisms (rather than nonenzymatic hydrolysis) that lead to O-dealkylation/dearylation of phosphotriesters.

量子化学模拟揭示了P450酶催化的有机磷阻燃剂的毒性动力学机制。
本文通过硅模拟研究了细胞色素P450酶(CYPs)催化的有机磷阻燃剂的代谢命运和毒性动力学,利用活性中心模型模拟CYPs,三苯基磷酸(TPHP),三(2-丁氧乙基)磷酸和三(1,3-二氯-2-丙基)磷酸作为底物。我们的计算阐明了关键的主要途径和预测产物,并得到了目前体外数据的证实。结果表明,烷基基OPFRs比芳基和卤化烷基取代OPFRs的消除速度更快。此外,我们还发现了TPHP芳基羟基化的质子穿梭途径和P = O键辅助的h转移机制(而不是非酶水解),导致磷酸三酯的O脱烷基/去酰化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
>24 weeks
期刊介绍: Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信