The interaction of Atg4B and Bcl-2 plays an important role in Cd-induced crosstalk between apoptosis and autophagy through disassociation of Bcl-2-Beclin1 in A549 cells
Zhiguo Li , Qiujuan Li , Wei Lv , Liping Jiang , Chengyan Geng , Xiaofeng Yao , Xiaoxia Shi , Yong Liu , Jun Cao
{"title":"The interaction of Atg4B and Bcl-2 plays an important role in Cd-induced crosstalk between apoptosis and autophagy through disassociation of Bcl-2-Beclin1 in A549 cells","authors":"Zhiguo Li , Qiujuan Li , Wei Lv , Liping Jiang , Chengyan Geng , Xiaofeng Yao , Xiaoxia Shi , Yong Liu , Jun Cao","doi":"10.1016/j.freeradbiomed.2018.11.020","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Cadmium (Cd) is a highly ubiquitous detrimental metal in the environment. It is a well-known inducer of tumorigenesis, but the mechanism is not clear. In our previous study, we found that ROS-dependent Atg4B upregulation mediated Cd-induced autophagy and autophagy played an important role in Cd-induced proliferation and invasion in A549 cells. In this study, we found that Cd induced both apoptosis and autophagy in A549 cells, and apoptosis preceded autophagy. Z-VAD-FMK repressed Cd-induced LC3 and </span>Beclin1, indicating that apoptosis was essential for Cd-induced autophagy. </span>3MA destroyed the recovery of </span>mitochondrial membrane potential<span> and increased Cd-induced CL-CASP9 and CL-CASP3 expression, suggesting that Cd-induced autophagy prevented A549 cells from apoptosis. Further study showed that Atg4B upregulation was mediated by mitochondrial dysfunction and conversely affected mitochondrial function by decreasing Bcl-2 protein expression and its localization in mitochondria, and played an important role in Cd-induced apoptosis. Moreover, Bcl-2 was involved in Cd-induced autophagy. Co-IP assay showed that Atg4B could directly bind to Bcl-2, and consequently promote disassociation of Bcl-2-Beclin1 and released autophagic protein Beclin1 to activate autophagic pathway. Taken together, our results demonstrated that the interaction of Atg4B and Bcl-2 might play an important role in Cd-induced crosstalk between apoptosis and autophagy through disassociation of Bcl-2-Beclin1. Cd-induced autophagy is apoptosis-dependent and prevents apoptotic cell death to ensure the growth and proliferation of A549 cells.</span></p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"130 ","pages":"Pages 576-591"},"PeriodicalIF":8.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.freeradbiomed.2018.11.020","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584918315673","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 33
Abstract
Cadmium (Cd) is a highly ubiquitous detrimental metal in the environment. It is a well-known inducer of tumorigenesis, but the mechanism is not clear. In our previous study, we found that ROS-dependent Atg4B upregulation mediated Cd-induced autophagy and autophagy played an important role in Cd-induced proliferation and invasion in A549 cells. In this study, we found that Cd induced both apoptosis and autophagy in A549 cells, and apoptosis preceded autophagy. Z-VAD-FMK repressed Cd-induced LC3 and Beclin1, indicating that apoptosis was essential for Cd-induced autophagy. 3MA destroyed the recovery of mitochondrial membrane potential and increased Cd-induced CL-CASP9 and CL-CASP3 expression, suggesting that Cd-induced autophagy prevented A549 cells from apoptosis. Further study showed that Atg4B upregulation was mediated by mitochondrial dysfunction and conversely affected mitochondrial function by decreasing Bcl-2 protein expression and its localization in mitochondria, and played an important role in Cd-induced apoptosis. Moreover, Bcl-2 was involved in Cd-induced autophagy. Co-IP assay showed that Atg4B could directly bind to Bcl-2, and consequently promote disassociation of Bcl-2-Beclin1 and released autophagic protein Beclin1 to activate autophagic pathway. Taken together, our results demonstrated that the interaction of Atg4B and Bcl-2 might play an important role in Cd-induced crosstalk between apoptosis and autophagy through disassociation of Bcl-2-Beclin1. Cd-induced autophagy is apoptosis-dependent and prevents apoptotic cell death to ensure the growth and proliferation of A549 cells.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.